Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Anh
Xem chi tiết
Trần Minh Hoàng
15 tháng 1 2021 lúc 19:17

Bất đẳng thức cần chứng minh tương đương:

\(a^{10}b^2+b^{10}a^2\ge a^8b^4+b^8a^4\)

\(\Leftrightarrow a^8+b^8\ge a^6b^2+b^6a^2\) (Do \(a^2b^2\ge0\))

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng).

Vậy ta có đpcm.

 

Trần Minh Hoàng
15 tháng 1 2021 lúc 19:52

\(a^8+b^8-a^6b^2-a^2b^6=\left(a^8-a^6b^2\right)+\left(b^8-a^2b^6\right)=a^6\left(a^2-b^2\right)+b^6\left(b^2-a^2\right)=\left(a^6-b^6\right)\left(a^2-b^2\right)\) nên suy ra được như vậy Quỳnh Anh

 

Nano Thịnh
Xem chi tiết
Nguyễn Hồng Pha
Xem chi tiết
Akai Haruma
23 tháng 3 2017 lúc 2:35

Lời giải:

BĐT tương đương với \((a^2+ab+ac)(a^2+ac+ab+bc)+b^2c^2\geq 0\)

Đặt \(a^2+ab+ac=t\)

BĐT cần chứng minh \(\Leftrightarrow t(t+bc)+b^2c^2=(t-\frac{bc}{2})^2+\frac{3b^2c^2}{4}\geq 0\)

Luôn đúng vì bình phương của một số thực luôn là số không âm

Dấu bằng xảy ra khi \(2(a^2+ab+ac)=bc\)\(bc=0\)

phạm thị như quỳnh
Xem chi tiết
Nguyễn Thị Yến Nga
Xem chi tiết
tthnew
23 tháng 7 2019 lúc 13:43

Sửa đề: Chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

Cách 1: Áp dụng BĐT Bunhiacopxki ta có đpcm.

Cách 2:BĐT \(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (đúng)

Ta có đpcm.

Đẳng thức xảy ra khi a = b= c

Trường lại
Xem chi tiết
kudo shinichi
29 tháng 1 2019 lúc 18:24

Sửa đề: a,b,c,d>0

C/m: \(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge\left(a+c\right)\left(c+d\right)\)

Áp dụng BĐT AM-GM ta có:

\(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2=\left[\frac{\left(a+c\right)+\left(b+d\right)}{2}\right]^2\ge\left[\frac{2.\sqrt{\left(a+c\right)\left(b+d\right)}}{2}\right]^2=\left(a+c\right)\left(b+d\right)\)

Dấu " = " xảy ra <=> a+c=b+d

Nguyễn Hoàng Ánh Tuyết
Xem chi tiết
tth_new
20 tháng 1 2020 lúc 8:43

Có: \(VT-VP=\frac{\left(b^2+c^2-2a^2\right)^2+\left(b-c\right)^2\left(\Sigma_{cyc}a^2+3\Sigma_{cyc}ab\right)}{2a+b+c}\ge0\)

Done!

Khách vãng lai đã xóa
Hồ Thị Hồng Nghi
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 12 2021 lúc 8:10

Áp dụng BĐT cosi:

\(\left(a+b+b+c+c+a\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\\ \ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\cdot3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\\ \Leftrightarrow2\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge9\\ \Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(đpcm\right)\)

Dấu \("="\Leftrightarrow a=b=c\)

 

Ánh Tuyết
Xem chi tiết
hattori heiji
28 tháng 6 2018 lúc 16:20

VT =\(\left(a+b+c\right)^2+a^2+b^2+c^2=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)

=\(\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)\)

=\(\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=VP\)

=> đpcm