§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quỳnh Anh

Chứng minh bất đẳng thức: 

\(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\left(a^8+b^8\right)\left(a^4+b^4\right)\forall a,b,c\in R\)

Trần Minh Hoàng
15 tháng 1 2021 lúc 19:17

Bất đẳng thức cần chứng minh tương đương:

\(a^{10}b^2+b^{10}a^2\ge a^8b^4+b^8a^4\)

\(\Leftrightarrow a^8+b^8\ge a^6b^2+b^6a^2\) (Do \(a^2b^2\ge0\))

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng).

Vậy ta có đpcm.

 

Trần Minh Hoàng
15 tháng 1 2021 lúc 19:52

\(a^8+b^8-a^6b^2-a^2b^6=\left(a^8-a^6b^2\right)+\left(b^8-a^2b^6\right)=a^6\left(a^2-b^2\right)+b^6\left(b^2-a^2\right)=\left(a^6-b^6\right)\left(a^2-b^2\right)\) nên suy ra được như vậy Quỳnh Anh

 


Các câu hỏi tương tự
Mộc Miên
Xem chi tiết
Mộc Miên
Xem chi tiết
Phụng Nguyễn Thị
Xem chi tiết
Hồ Thị Hồng Nghi
Xem chi tiết
Linh Châu
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Linh Châu
Xem chi tiết
Hồ Thị Hồng Nghi
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết