Lời giải:
BĐT cần cm tương đương với:
$2(a^4+b^4+c^4)\geq ab^3+bc^3+ca^3+a^3b+b^3c+c^3a$
$\Leftrightarrow (a^4+b^4-a^3b-ab^3)+(b^4+c^4-b^3c-bc^3)+(c^4+a^4-ca^3-c^3a)\geq 0$
$\Leftrightarrow (a-b)^2(a^2+ab+b^2)+(b-c)^2(b^2+bc+c^2)+(c-a)^2(c^2+ca+a^2)\geq 0$
Điều này luôn đúng do:
$(a-b)^2\geq 0; a^2+ab+b^2=(a+\frac{b}{2})^2+\frac{3b^2}{4}\geq 0$ với mọi $a,b\in\mathbb{R}$ và tương tự với 2 đa thức còn lại)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c$
Do bđt đối xứng nên ta giả sử: \(a\ge b\ge c\)
Áp dụng Chebyshev cho hai dãy đơn điệu tăng (a;b;c) và(a^3;b^3;c^3):
\(a^4+b^4+c^4=a.a^3+b.b^3+c.^3\ge\dfrac{1}{3}\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)