Cho a, b, c, d > 0. Chứng minh rằng:
1.
\(\dfrac{a}{\sqrt{a^2+8bc}}\)+ \(\dfrac{b}{\sqrt{b^2+8ac}}\)+ \(\dfrac{c}{\sqrt{c^2+8ab}}\) ≥ 1
2.
\(\dfrac{a}{b+2c+3d}\)+\(\dfrac{b}{c+2d+3a}\)+\(\dfrac{c}{d+2a+3b}\)+ \(\dfrac{d}{a+2b+3c}\) ≥ \(\dfrac{2}{3}\)
3.
\(\dfrac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}\) + \(\dfrac{b^4}{\left(b+c\right)\left(b^2+c^2\right)}\) + \(\dfrac{c^4}{\left(c+d\right)\left(c^2+d^2\right)}\) + \(\dfrac{d^4}{\left(d+a\right)\left(d^2+a^2\right)}\) ≥ \(\dfrac{a+b+c+d}{4}\)
Bất đẳng thức BuNyaKovSky ( BCS )
Bài 1:
Ta có: \(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}=\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\)
Áp dụng bđt Cauchy Schwarz có:
\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8bc}+c\sqrt{c^2+8bc}}\)
Lại sử dụng bđt Cauchy schwarz ta có:
\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\cdot\sqrt{a^3+8abc}+\sqrt{b}\cdot\sqrt{b^3+8abc}+\sqrt{c}\cdot\sqrt{c^3+8abc}\ge\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)
\(\Rightarrow\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}}=\sqrt{\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}}\)
=> Ta cần chứng minh: \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)
hay \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bđt Cosi ta có:
\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)
Nhân các vế của 3 bđt trên ta đc:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)
=> Đpcm