Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
QSDFGHJK
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 9 2020 lúc 15:56

d.

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^4x\)

\(tan^4x-3tan^2x-4tanx-3=0\)

\(\Leftrightarrow\left(tan^2x+tanx+1\right)\left(tan^2x-tanx-3\right)=0\)

\(\Leftrightarrow tan^2x-tanx-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1-\sqrt{13}}{2}\\tanx=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(\frac{1-\sqrt{13}}{2}\right)+k\pi\\x=arctan\left(\frac{1+\sqrt{13}}{2}\right)+k\pi\end{matrix}\right.\)

Khách vãng lai đã xóa
QSDFGHJK
28 tháng 9 2020 lúc 21:40

mọi người giúp hộ mình nhanh với

Khách vãng lai đã xóa
Nguyễn Việt Lâm
29 tháng 9 2020 lúc 15:51

a.

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)

\(2tan^3x+4=3tanx\left(1+tan^2x\right)\)

\(\Leftrightarrow2tan^3x+4=3tanx+3tan^3x\)

\(\Leftrightarrow tan^3x+3tanx-4=0\)

\(\Leftrightarrow\left(tanx-1\right)\left(tan^2x+tanx+4\right)=0\)

\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\)

muon tim hieu
Xem chi tiết
Kẻ hủy diệt lượng giác
26 tháng 12 2021 lúc 16:11

undefined

Thiên Yết
Xem chi tiết
Lê Thị Thục Hiền
5 tháng 7 2021 lúc 7:11

1,\(A=3\left(sin^4x+cos^4x\right)-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)

\(=3\left(sin^4x+cos^4x\right)-2\left(sin^4x-sin^2x.cos^4x+cos^4x\right)\)

\(=sin^4x+2sin^2x.cos^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\)

Vậy...

2,\(B=cos^6x+2sin^4x\left(1-sin^2x\right)+3\left(1-cos^2x\right)cos^4x+sin^4x\)

\(=-2cos^6x+3sin^4x-2sin^6x+3cos^4x\)

\(=-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)

\(=-2\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)\(=cos^4x+sin^4x+2sin^2x.cos^2x=1\)

Vậy...

3,\(C=\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}\right)\right]+\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)

\(=cos\left(-\dfrac{7\pi}{12}\right)+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}+\pi\right)\right]\)

\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)-cos\left(2x-\dfrac{\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}\)

Vậy...

4, \(D=cos^2x+\left(-\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)^2+\left(-\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right)^2\)

\(=cos^2x+\dfrac{1}{4}cos^2x+\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x+\dfrac{1}{4}cos^2x-\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x\)

\(=\dfrac{3}{2}\left(cos^2x+sin^2x\right)=\dfrac{3}{2}\)

Vậy...

5, Xem lại đề

6,\(F=-cosx+cosx-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\pi+\dfrac{\pi}{2}-x\right)\)

\(=tan\left(\pi-\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=tan\left(\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=cotx.tanx=1\)

Vậy...

Thảo Nguyễn Phương
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 8 2020 lúc 10:30

a/ Bạn coi lại đề bài, pt này có 1 nghiệm rất xấu ko giải được:

\(\Leftrightarrow1-sin^2x-2\sqrt{3}sinx.cosx=sin^3x+1\)

\(\Leftrightarrow sin^3x+sin^2x+2\sqrt{3}sinx.cosx=0\)

\(\Leftrightarrow sinx\left(sin^2x+sinx+2\sqrt{3}cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\sin^2x+sinx+2\sqrt{3}cosx=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow sin^2x+sinx=-2\sqrt{3}cosx\) (\(cosx\le0\))

\(\Leftrightarrow sin^2x\left(sinx+1\right)^2=12cos^2x\)

\(\Leftrightarrow sin^2x\left(sinx+1\right)^2=12\left(1-sinx\right)\left(1+sinx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}1+sinx=0\left(2\right)\\sin^2x\left(sinx+1\right)=12\left(1-sinx\right)\left(3\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow x=-\frac{\pi}{2}+k2\pi\) (thỏa mãn)

\(\left(3\right)\Leftrightarrow sin^3x+sin^2x+12sinx-12=0\)

Pt bậc 3 này có nghiệm thực thuộc \(\left(-1;1\right)\) nhưng rất xấu

Nguyễn Việt Lâm
4 tháng 8 2020 lúc 10:30

b/

\(\Leftrightarrow\frac{3}{5}sin2x+\frac{4}{5}cos2x=-cos2003x\)

Đặt \(\frac{3}{5}=cosa\) với \(a\in\left(0;\pi\right)\)

\(\Rightarrow sin2x.cosa+cos2x.sina=-cos2003x\)

\(\Leftrightarrow sin\left(2x+a\right)=sin\left(2003x-\frac{\pi}{2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2003x-\frac{\pi}{2}=2x+a+k2\pi\\2003x-\frac{\pi}{2}=\pi-2x-a+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4002}+\frac{a}{2001}+\frac{k2\pi}{2001}\\x=\frac{3\pi}{4010}-\frac{a}{2005}+\frac{k2\pi}{2005}\end{matrix}\right.\)

Nguyễn Việt Lâm
4 tháng 8 2020 lúc 10:31

c/

\(\Leftrightarrow\sqrt{3}sin\left(x-\frac{\pi}{3}\right)+cos\left(\frac{\pi}{3}-x\right)=2sin1972x\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin\left(x-\frac{\pi}{3}\right)+\frac{1}{2}cos\left(x-\frac{\pi}{3}\right)=sin1972x\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{3}+\frac{\pi}{6}\right)=sin1972x\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=sin1972x\)

\(\Leftrightarrow\left[{}\begin{matrix}1972x=x-\frac{\pi}{6}+k2\pi\\1972x=\frac{7\pi}{6}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{11826}+\frac{k2\pi}{1971}\\x=\frac{7\pi}{11838}+\frac{k2\pi}{1973}\end{matrix}\right.\)

Ngô Chí Thành
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 9 2020 lúc 15:44

\(\Leftrightarrow1-\frac{1}{2}sin^22x+cos\left(x-\frac{\pi}{4}\right)sin\left(3x-\frac{\pi}{4}\right)-\frac{3}{2}=0\)

Đặt \(x-\frac{\pi}{4}=a\Rightarrow x=a+\frac{\pi}{4}\)

\(\Rightarrow1-\frac{1}{2}sin^2\left(2a+\frac{\pi}{2}\right)+cosa.sin\left(3a+\frac{3\pi}{4}-\frac{\pi}{4}\right)-\frac{3}{2}=0\)

\(\Leftrightarrow1-\frac{1}{2}cos^22a+cosa.cos3a-\frac{3}{2}=0\)

\(\Leftrightarrow2-cos^22a+cos4a+cos2a-3=0\)

\(\Leftrightarrow-cos^22a+2cos^22a-1+cos2a-1=0\)

\(\Leftrightarrow cos^22a+cos2a-2=0\)

\(\Leftrightarrow cos2a=1\Leftrightarrow cos\left(2x-\frac{\pi}{2}\right)=1\)

\(\Leftrightarrow sin2x=1\Rightarrow x=\frac{\pi}{4}+k\pi\)

duyên lương
Xem chi tiết
👁💧👄💧👁
6 tháng 8 2019 lúc 21:41

Tham khảo ạ: Giải phương trình:$\sin^4x+\cos^4x+\cos(x-\frac{\pi}{4})\sin(3x-\frac{\pi}{4})-\frac{3}{2}=0$ - Phương trình, Hệ phương trình Lượng giác - Diễn đàn Toán học

Phần đằng sau tự giải nốt ạ

Trần Mun
Xem chi tiết

1: Ta có: \(-1<=\sin\left(2x+\frac{\pi}{4}\right)\le1\)

=>\(-3\le3\cdot\sin\left(2x+\frac{\pi}{4}\right)\le3\)

=>\(-3-1\le3\cdot\sin\left(2x+\frac{\pi}{4}\right)-1\le3-1\)

=>-4<=y<=2

=>Tập giá trị là T=[-4;2]

\(y_{\min}=-4\) khi \(\sin\left(2x+\frac{\pi}{4}\right)=-1\)

=>\(2x+\frac{\pi}{4}=-\frac{\pi}{2}+k2\pi\)

=>\(2x=-\frac34\pi+k2\pi\)

=>\(x=-\frac38\pi+k\pi\)

2: \(0\le cos^2x\le1\)

=>\(0\ge-5\cdot cos^2x\ge-5\)

=>\(0+3\ge-5\cdot cos^2x+3\ge-5+3\)

=>3>=y>=-2

=>Tập giá trị là T=[-2;3]

\(y_{\max}=3\) khi \(cos^2x=1\)

=>\(\sin^2x=0\)

=>sin x=0

=>\(x=k\pi\)

\(y_{\min}=-2\) khi \(cos^2x=0\)

=>cosx=0

=>\(x=\frac{k\pi}{2}\)

3: \(-1\le cosx\le1\)

=>\(-3\le3\cdot cosx\le3\)

=>\(-3+4\le3\cdot cosx+4\le3+4\)

=>\(1\le3\cdot cosx+4\le7\)

=>\(\frac51\ge\frac{5}{3\cdot cosx+4}\ge\frac57\)

=>\(\frac57\le y\le5\)

=>Tập giá trị là \(T=\left\lbrack\frac57;5\right\rbrack\)

\(y_{\min}=\frac57\) khi cosx=1

=>\(x=k2\pi\)

\(y_{\max}=5\) khi cosx=-1

=>\(x=\pi+k2\pi\)

4: \(y=\sin^2x-4\cdot\sin x+8\)

\(=\sin^2x-4\cdot\sin x+4+4\)

\(=\left(\sin x-2\right)^2+4\)

Ta có: \(-1\le\sin x\le1\)

=>\(-1-2\le\sin x-2\le1-2\)

=>\(-3\le\sin x-2\le-1\)

=>\(1\le\left(\sin x-2\right)^2\le9\)

=>\(5\le\left(\sin x-2\right)^2+4\le13\)

=>5<=y<=13

=>Tập giá trị là T=[5;13]

\(y_{\min}=5\) khi sin x-2=-1

=>sin x=1

=>\(x=\frac{\pi}{2}+k2\pi\)

\(y_{\max}\) =13 khi sin x-2=-3

=>sin x=-1

=>\(x=-\frac{\pi}{2}+k2\pi\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 9 2020 lúc 15:00

a.

\(sin\left(2x+1\right)=-cos\left(3x-1\right)\)

\(\Leftrightarrow sin\left(2x+1\right)=sin\left(3x-1-\frac{\pi}{2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1-\frac{\pi}{2}=2x+1+k2\pi\\3x-1-\frac{\pi}{2}=\pi-2x-1+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+2+k2\pi\\x=\frac{3\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)

b.

\(sin\left(2x-\frac{\pi}{6}\right)=sin\left(\frac{\pi}{4}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{4}-x+k2\pi\\2x-\frac{\pi}{6}=\frac{3\pi}{4}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{12}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
16 tháng 9 2020 lúc 15:04

c.

\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=-sin\left(x-\frac{2\pi}{5}-\pi\right)\)

\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=sin\left(x-\frac{2\pi}{5}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{2\pi}{3}=x-\frac{2\pi}{5}+k2\pi\\3x+\frac{2\pi}{3}=\frac{7\pi}{5}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{8\pi}{15}+k\pi\\x=\frac{11\pi}{60}+\frac{k\pi}{2}\end{matrix}\right.\)

d.

\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=sin\left(\frac{\pi}{4}-x\right)\)

\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{4}+x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{3}=\frac{\pi}{4}+x+k2\pi\\4x+\frac{\pi}{3}=-\frac{\pi}{4}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{7\pi}{60}+\frac{k2\pi}{5}\end{matrix}\right.\)