CHo \(x\cdot\sqrt{1-y^2}+y\cdot\sqrt{1-x^2}=1\).CMR
\(x^2+y^2=1\)
giải hệ phương trình :
a) \(\hept{\begin{cases}x\cdot\left(1+y-x\right)=-2\cdot y^2-y\\x\cdot\left(\sqrt{2\cdot y}-2\right)=y\cdot\left(\sqrt{x-1}-2\right)\end{cases}}\)
b) \(\hept{\begin{cases}1+x\cdot y+\sqrt{x\cdot y}=x\\\frac{1}{x\cdot\sqrt{x}}+y\cdot\sqrt{y}=\frac{1}{\sqrt{x}}+3\cdot\sqrt{y}\end{cases}}\)
Làm hộ mk nhé mk tick cho :))))))))))
\(a=x\cdot y+\sqrt{\left(1+x^2\right)\cdot\left(1+y^2\right)}\) \(b=x\cdot\sqrt{1+y^2}+y\cdot\sqrt{1+x^2}\) với xy>0 tính b theo a
\(\hept{\begin{cases}a^2=x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\\b^2=y^2\left(1+x^2\right)+x^2\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\end{cases}}\)
\(\Rightarrow a^2-b^2=1\)
\(\Rightarrow a^2=1+b^2\)
Bài 1: CMR \(P=\dfrac{a+b}{\sqrt{a\cdot\left(3a+b\right)}+\sqrt{b\cdot\left(3b+a\right)}}>=\dfrac{1}{2}\)
với a, b > 0
Bài 2: cho x, y, z > 0. CMR
\(P=\sqrt{\dfrac{x}{y+z}}+\sqrt{\dfrac{y}{x+z}}+\sqrt{\dfrac{z}{x+y}}>2\)
Tính
\(\dfrac{1}{x-y}\cdot\sqrt{x^4\left(x-y\right)^2}\) (x>y)
\(\sqrt{27}\cdot\sqrt{48\cdot\left(2-a\right)^2}\) (a>2)
\(\left(\sqrt{2012}+\sqrt{2011}\right)\cdot\left(\sqrt{2012}+\sqrt{2011}\right)\)
\(\sqrt{\dfrac{64x^2}{49\left(y+1\right)^2}}\) (x<0;y>-1)
\(\sqrt{\dfrac{121x^2}{144\left(y+2\right)}}\left(x>0;y< -2\right)\)
\(\sqrt{\dfrac{676x^3}{169xy^2}}\left(x>0;y< 1\right)\)
a: \(=\dfrac{1}{x-y}\cdot x^2\cdot\left(x-y\right)=x^2\)
b: \(=\sqrt{27\cdot48}\cdot\left|a-2\right|=36\left(a-2\right)\)
c: \(=\left(\sqrt{2012}+\sqrt{2011}\right)^2\)
d: \(=\dfrac{8}{7}\cdot\dfrac{-x}{y+1}\)
e: \(=\dfrac{11}{12}\cdot\dfrac{x}{-y-2}=\dfrac{-11x}{12\left(y+2\right)}\)
Rút gọn:
\(A=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\cdot\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]\cdot\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{xy^3}+\sqrt{x^3y}}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{y}=b\end{matrix}\right.\), ta có:
\(A=\left[\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\times\dfrac{2}{a+b}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\)\(\times\dfrac{a^3+ab^2+a^2b+b^3}{ab^3+a^3b}\)
\(=\left(\dfrac{b+a}{ab}\times\dfrac{2}{a+b}+\dfrac{b^2+a^2}{a^2b^2}\right)\)\(\times\dfrac{a^2\left(a+b\right)+b^2\left(a+b\right)}{ab\left(a^2+b^2\right)}\)
\(=\dfrac{2ab+b^2+a^2}{a^2b^2}\times\dfrac{\left(a+b\right)\left(a^2+b^2\right)}{ab\left(b^2+a^2\right)}\)
\(=\dfrac{\left(a+b\right)^3}{a^3b^3}\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{\left(xy\right)^3}}\)
câu 1: Giải và biện luận hệ phương trình:\(\hept{\begin{cases}2\left(m-1\right)\cdot x+y=2\\\left(m+2\right)\cdot x+\left(m-1\right)\cdot y=3\end{cases}}\)
câu 2: giải hệ phương trình \(\hept{\begin{cases}x+y=\sqrt{4z-1}\\y+z=\sqrt{4x-1}\\x+z=\sqrt{4y-1}\end{cases}}\)
khử mẫu bt lấy căn :
a) \(3xy\cdot\sqrt{\dfrac{2}{xy}}\)
b)\(x\cdot\sqrt{\dfrac{6}{x}}+\sqrt{\dfrac{2x}{3}}\)
c) \(xy\cdot\sqrt{\dfrac{1}{xy}}+x\cdot\sqrt{\dfrac{y}{x}}-y\cdot\sqrt{\dfrac{x}{y}}\)
a: \(=3xy\cdot\dfrac{\sqrt{2}}{\sqrt{xy}}=3\sqrt{2}\sqrt{xy}\)
b: \(=x\cdot\dfrac{\sqrt{6}}{\sqrt{x}}+\dfrac{\sqrt{6}}{3}\sqrt{x}\)
\(=\sqrt{6}\sqrt{x}+\dfrac{\sqrt{6}}{3}\sqrt{x}=\dfrac{4\sqrt{6}}{3}\cdot\sqrt{x}\)
c: \(=\sqrt{xy}+x\cdot\dfrac{\sqrt{y}}{\sqrt{x}}-y\cdot\dfrac{\sqrt{x}}{\sqrt{y}}\)
\(=\sqrt{xy}+\sqrt{xy}-\sqrt{xy}=\sqrt{xy}\)
Cho a = xy + \(\sqrt{(1+x^2)\cdot\left(1+y^2\right)}\) và b = x\(\sqrt{1+y^2} +y\sqrt{1+x^2}\); X . Y = 0. Tính b theo a
giải hệ phương trình: A, \(\frac{1}{x}+\frac{1}{y}=9\) và \(\left(\frac{1}{\sqrt[3]{x}}+\frac{1}{\sqrt[3]{y}}\right)\cdot\left(\frac{1}{\sqrt[3]{x}}+1\right)\cdot\left(\frac{1}{\sqrt[3]{y}}+1\right)=18\)
B,\(3x^2-y=0\) và \(\left(\sqrt{5x^3-4}+2\sqrt[3]{7x^2-1}\right)\cdot\frac{y+4}{3}=2\cdot\left(y+19\right)\)