\(CHO\:A\:,b,c,\:x,y,z,>0\:VA\dfrac{A}{X}=\dfrac{B}{Y}=\dfrac{C}{Z}\:CM:\:\sqrt{AX}+\sqrt{BY}+\sqrt{CZ\:}=\left(\sqrt{A+b+c\:}\right)\:\left(\sqrt{X+y+z}\right)\)
cho x,y,z>0 và x+y+z=\(\sqrt{2}\). chứng minh rằng
\(A=\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\dfrac{\sqrt{y+z}}{x}+\dfrac{\sqrt{z+x}}{y}+\dfrac{\sqrt{x+y}}{z}\right)\ge4\sqrt{2}\)
Bài 1: cho a, b > 0 và a + b <= 1. CMR: \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}>=3\)
Bài 2: cho x, y, z >=0 thỏa mãn x + y + z >0. CMR: \(\dfrac{x}{4x+4y+z}+\dfrac{y}{4y+4z+x}+\dfrac{z}{4z+4x+y}< =\dfrac{1}{3}\)
Bài 3: cho x, y, z > 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
Tìm GTNN của \(\dfrac{1}{\sqrt{2x^2+y^2+3}}+\dfrac{1}{\sqrt{2y^2+z^2+3}}+\dfrac{1}{\sqrt{2z^2}+x^2+3}\)
1) Giải phương trình: a) \(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{91}}=0\) b) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\dfrac{1}{2}\left(x+y+z\right)\)
Cho x,y,z > 0 và xy+yz+zx=1. Tính
\(P=x.\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y.\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
tìm x,y,z biết:\(\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}=\dfrac{1}{2}\left(x+y+z\right)\)
Bài 1 : cho x, y >0 và x2+y2=1. Tìm GTNN của \(P=\left(1+x\right)\cdot\left(1+\dfrac{1}{y}\right)+\left(1+y\right)\cdot\left(1+\dfrac{1}{x}\right)\)
Bài 2 : cho a, b, c > 0. CMR
\(\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}>=\dfrac{1}{2a+b+c}+\dfrac{1}{2b+a+c}+\dfrac{1}{2c+a+b}\)
Bài 3 : cho a, b, c, d >0. CMR
\(\dfrac{a+c}{a+b}+\dfrac{b+d}{b+c}+\dfrac{c+a}{c+d}+\dfrac{d+b}{d+a}>=4\)
### Các thánh giải giùm em bài này với ###
Với các số dương x, y, z thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\). Tìm Max của:
Q= \(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\)
từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)
đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)
ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)
=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)
\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )
^_^