Áp dụng BĐT Bunhiacopxki , ta có :
\(\left(a+b+c\right)\left(x+y+z\right)\text{≥}\left(\sqrt{ax}+\sqrt{by}+\sqrt{cz}\right)^2\)
⇔ \(\left(\sqrt{a+b+c}\right)\left(\sqrt{x+y+z}\right)\text{≥}\sqrt{ax}+\sqrt{by}+\sqrt{cz}\)
\("="\text{⇔}\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
⇒ \(\left(\sqrt{a+b+c}\right)\left(\sqrt{x+y+z}\right)\text{=}\sqrt{ax}+\sqrt{by}+\sqrt{cz}\)