Trong mặt phẳng Oxy, cho 2 điểm \(M\left(2;-8\right)\) và \(N\left(-\frac{1}{2};2\right)\). Qua phép vị tự tâm O tỉ số k biến M thành N. Tính giá trị k?
1, Trong mặt phẳng tọa độ Oxy , cho M(1;-1) . N (3;2) , P(0;-5) lần lượt là trung điểm các cạnh BC, CA, AB của tam giác ABC Tìm tọa độ điểm A
2, Trong mặt phẳng tọa độ Oxy , cho A(1;3) , B(-1;-2) , C(1;5) . Tọa độ D trên trục Ox sao cho ABCD là hình thang có 2 đấy AB và CD là ?
Trong mặt phẳng tọa độ Oxy , cho B(2;3) , C(-1;-2) Điểm M thỏa mãn \(\overrightarrow{2MB}+\overrightarrow{3MC}=\overrightarrow{0}\) Tìm tọa độ điểm M
Trong mặt phẳng tọa độ Oxy , cho vecto \(\overrightarrow{u}=\left(2;-4\right),\overrightarrow{a}=\left(1;-2\right),\overrightarrow{b}=\left(1;-3\right)\)Biết \(\overrightarrow{u}=m\overrightarrow{a}+n\overrightarrow{b}\) tính m - n bẳng ?
Trong mặt phẳng tọa độ Oxy, cho điểm \(A\left(1;2\right);B\left(-2;4\right);C\left(2;m\right)\). Hãy tìm m để 3 điểm A, B, C thẳng hàng ?
\(\overrightarrow{AB}\left(-3;2\right)\); \(\overrightarrow{AC}\left(1;m-2\right)\).
Ba điểm A, B, C thẳng hàng khi và chỉ khi:
\(\dfrac{1}{-3}=\dfrac{m-2}{2}\Leftrightarrow-3\left(m-2\right)=2\)\(\Leftrightarrow m=\dfrac{4}{3}\).
Trong mặt phẳng Oxy, cho đường thẳng \(d:x+y-2=0\) và 2 điểm \(A\left(1;3\right)\) và \(B\left(2;1\right)\). Biết điểm \(M\left(a;b\right)\), \(a>0\) thuộc d sao cho diện tích \(\Delta MAB=4\). Tính tổng của \(3a+5b\).
AB=căn 5
AB: (x-1)/1=(y-3)/-2
=>2x+y-5=0
M thuộc Δ nên M(m;2-m)
\(d\left(M;AB\right)=\dfrac{\left|m-3\right|}{\sqrt{5}}\)
\(S_{AMB}=\dfrac{1}{2}\cdot MH\cdot AB=4\)
=>|m-3|=8
=>m=11(nhận) hoặc m=-5(loại)
=>M(11;-9)
=>3a+5b=3*11+5*(-9)=-12
Bài 1 : tìm m để 3 điểm A( 2 ; -1 ) , B ( 1 ; 1 ) , C ( 3 ; m+1 ) trong mặt phẳng Oxy thẳng hàng .
Bài 2 : trong mặt phẳng Oxy cho A ( 1; 2 ) , B ( 3 ; 4 ) . tìm điểm M thuộc Ox sao cho MA + MB đạt giá trị nhỏ nhất .
Hãy nhắc lại công thức tính khoảng cách giữa 2 điểm \(I\left( {a;b} \right)\) và \(M\left( {x;y} \right)\)trong mặt phẳng Oxy.
Khoảng cách hai điểm M,I (hay độ dài đoạn thẳng MI) chính là độ dài vecto \(\overrightarrow {MI} \)
\(\overrightarrow {MI} = \left( {a - x;b - y} \right) \Rightarrow \left| {\overrightarrow {MI} } \right| = \sqrt {{{\left( {a - x} \right)}^2} + {{\left( {;b - y} \right)}^2}} \)
Vậy khoảng cách giữa hai điểm \(I\left( {a;b} \right)\) và \(M\left( {x;y} \right)\) là \(\sqrt {{{\left( {a - x} \right)}^2} + {{\left( {;b - y} \right)}^2}} \)
Trong mặt phẳng tọa độ $Oxy$, cho elip $\left( E \right):\dfrac{{ x^2}}{4}+{{y}^2}=1.$ Gọi ${{F}_{1}};{{F}_2}$ là hai tiêu điểm của $\left( E \right)$ và điểm $M\in \left( E \right)$ sao cho $M{{F}_{1}}\bot M{{F}_2}$. Tính $M{{F}_{1}}^2+M{{F}_2}^2$ và diện tích $\Delta M{{F}_{1}}{{F}_2}.$
Trong mặt phẳng Oxy, cho đường tròn (C): \(\left(x-1\right)^2+y^2=2\) và đường thẳng \(\Delta:x-y+4=0\) gọi \(M\left(x_0;y_0\right)\) \(\in\) (C) là điểm có khoảng cách từ m tới (\(\Delta\)) lớn nhất. Tính \(x_0+y_0\)
(1) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(1;-4\right)\), \(\overrightarrow{b}=\left(0;2\right)\). tọa độ của vecto \(\overrightarrow{u}=2\overrightarrow{a}-\overrightarrow{b}\) là?
(2) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(-7;3\right)\), \(\overrightarrow{b}=\left(4;1\right)\). tọa độ của vecto \(\overrightarrow{u}=\overrightarrow{b}-2\overrightarrow{a}\) là?
(3) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{u}=\left(-5;4\right)\), \(\overrightarrow{v}=-3\overrightarrow{j}\). tọa độ của vecto \(\overrightarrow{a}=2\overrightarrow{u}-5\overrightarrow{v}\) là?
(4) trong mặt phẳng tọa độ Oxy, cho hai điểm A (1;1), B (4;-7) và \(\overrightarrow{OM}=2\overrightarrow{OA}-5\overrightarrow{OB}\). tổng hoành độ và tung độ của điểm M là?
giúp mk vs ạ mk cần gấp thank
(1); vecto u=2*vecto a-vecto b
=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)
(2): vecto u=-2*vecto a+vecto b
=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)
(3): vecto a=2*vecto u-5*vecto v
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)
(4): vecto OM=(x;y)
2 vecto OA-5 vecto OB=(-18;37)
=>x=-18; y=37
=>x+y=19
Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\) và đường thẳng (d): y=\(3x+m^2-1\). Xác định m để (d) và (P) cùng đi qua điểm có tung độ bằng 1
Thay y=1 vào (P), ta được:
\(x^2=1\)
=>x=1 hoặc x=-1
Thay x=1 và y=1 vào (d), ta được:
\(m^2-1+3=1\)(vô lý)
Thay x=-1 và y=1 vào (d), ta được:
\(m^2-1-3=1\)
\(\Leftrightarrow m^2=5\)
hay \(m\in\left\{\sqrt{5};-\sqrt{5}\right\}\)
tham khảo
Thay y=1 vào (P), ta được:
\(x^2=1\)
=>x=1 hoặc x=-1
Thay x=1 và y=1 vào (d), ta được:
\(m^2-1+3=1\)(vô lý)
Thay x=-1 và y=1 vào (d), ta được:
\(m^2-1-3=1\)
\(\Leftrightarrow m^2=5\)
hay \(m\in\left\{\sqrt{5};-\sqrt{5}\right\}\)
1. Trong mặt phẳng Oxy, có trọng tâm G(1,-1), M(2,1) và N(4,-2) lần lượt là trung điểm của AB, BC. Tìm tọa độ điểm B
2. Trong mặt phẳng Oxy, cho A(1,3), B(-2,2). Biết đường thẳng AB cắt trục tung tại điểm M(0,b). Giá trị b thuộc khoảng nào
3. Trong mặt phẳng tọa độ Oxy, cho A thỏa vecto OA= 2vecto i + 3vecto j. Tọa độ điểm A là
4. Trong mặt phẳng Oxy, cho vecto x=(1,2), vecto y=(3,4), vecto z=(5,-1). Tọa độ vecto u = 2vecto x + vecto y - vecto z là
5. Trong mặt phẳng tọa độ Oxy, cho M(2,-3), N(4,7). Tọa độ trung điểm I của đoạn thẳng MN là
6. Cho vecto x=(-4,7) và hai vecto a=(2,-1), b=(-3,4). Nếu vecto x = m vecto a + n vecto b thì m, n là cặp số nào