Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 18:12

\(A^2=\left(\sqrt{13}.\sqrt{13x^2-13x^4}+3\sqrt{3}.\sqrt{3x^2+3x^4}\right)^2\)

\(\Rightarrow A^2\le\left(13+27\right)\left(16x^2-10x^4\right)=40\left[\frac{32}{5}-10\left(x^2-\frac{4}{5}\right)^2\right]\le256\)

\(\Rightarrow A\le16\Rightarrow A_{max}=16\) khi \(x^2=\frac{4}{5}\)

Khách vãng lai đã xóa
chi nguyễn mai
Xem chi tiết
soyeon_Tiểu bàng giải
2 tháng 11 2016 lúc 11:10

\(F=\frac{4.\sqrt{x}+15}{2.\sqrt{x}+9}=\frac{4.\sqrt{x}+18-3}{2.\sqrt{x}+9}=\frac{2.\left(2.\sqrt{x}+9\right)}{2.\sqrt{x}+9}-\frac{3}{2.\sqrt{x}+9}=2-\frac{3}{2.\sqrt{x}+9}\)

Có: \(2.\sqrt{x}+9\ge9\Rightarrow\frac{3}{2.\sqrt{x}+9}\le\frac{1}{3}\)

\(\Rightarrow F=2-\frac{3}{2.\sqrt{x}+9}\ge\frac{5}{3}\)

Dấu "=" xảy ra khi \(2.\sqrt{x}=0\Rightarrow\sqrt{x}=0\Rightarrow x=0\)

Vậy Min F = \(\frac{5}{3}\)khi x = 0

mokona
2 tháng 11 2016 lúc 11:16

để tìm \(min\) của \(F\) ta xét \(GTNN\)của\(\sqrt{x}\)

\(GTNN\)của \(\sqrt{x}\)là \(0\)

thay \(0\)vào căn của biểu thức ta có:

\(F=\frac{4.\sqrt{0}+15}{2.\sqrt{0}+9}=\frac{15}{9}\approx1,6666666666667\)

vậy \(min\)của \(F\)\(\approx1,6\)

Kinder
Xem chi tiết
Akai Haruma
31 tháng 12 2020 lúc 14:31

a) Đặt $\sqrt{x+1}=a; \sqrt{9-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b$ với $a,b\geq 0$ và $a^2+b^2=10$Ta có:

$f^2(a,b)=(a+b)^2=a^2+b^2+2ab=10+2ab\geq 10$ do $ab\geq 0$

$\Rightarrow f(a,b)\geq \sqrt{10}$ hay $f_{\min}=\sqrt{10}$

Mặt khác: $f^2(a,b)=(a+b)^2\leq 2(a^2+b^2)=20$ (theo BĐT AM-GM)

$\Rightarrow f(a,b)\leq \sqrt{20}=2\sqrt{5}$ hay $f_{\max}=2\sqrt{5}$

b) 

Đặt $\sqrt{x}=a; \sqrt{2-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b+ab$ với $a,b\geq 0$ và $a^2+b^2=2$. Ta có:

$f(a,b)=\sqrt{(a+b)^2}+ab=\sqrt{a^2+b^2+2ab}+ab=\sqrt{2+2ab}+ab\geq \sqrt{2}$ do $ab\geq 0$

Vậy $f_{\min}=\sqrt{2}$

Lại có, theo BĐT AM-GM:

$f(a,b)=\sqrt{2+2ab}+ab\leq \sqrt{2+a^2+b^2}+\frac{a^2+b^2}{2}=\sqrt{2+2}+\frac{2}{2}=3$

Vậy $f_{\max}=3$

 

Akai Haruma
31 tháng 12 2020 lúc 14:34

c) Đặt $\sqrt{8-x^2}=a$ thì bài toán trở thành tìm max, min của:

$f(x,a)=x+a+ax$ với $x,a\geq 0$ và $x^2+a^2=8$. Bài này chuyển về y hệt  như phần b. 

$f_{\min}=2\sqrt{2}$

$f_{\max}=8$

d) Tương tự:

$f_{\min}=2$ khi $x=\pm 2$

$f_{\max}=2+2\sqrt{2}$ khi $x=0$

Herimone
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 21:33

1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)

\(\Leftrightarrow x+2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow x=1\left(nhận\right)\)

2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)

\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)

Phạm Dương Ngọc Nhi
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 8 2021 lúc 19:29

ĐKXĐ: \(x\ge1\)

\(3\sqrt[]{x-1}+m\sqrt[]{x+1}=2\sqrt[4]{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow3\sqrt[]{\dfrac{x-1}{x+1}}+m=2\sqrt[4]{\dfrac{x-1}{x+1}}\)

Đặt \(\sqrt[4]{\dfrac{x-1}{x+1}}=t\Rightarrow0\le t< 1\)

\(\Rightarrow3t^2+m=2t\Leftrightarrow-3t^2+2t=m\)

Xét \(f\left(t\right)=-3t^2+2t\) trên \([0;1)\)

\(f'\left(t\right)=-6t+2=0\Rightarrow t=\dfrac{1}{3}\)

\(f\left(0\right)=0;f\left(\dfrac{1}{3}\right)=\dfrac{1}{3};f\left(1\right)=-1\)

\(\Rightarrow-1< f\left(t\right)\le\dfrac{1}{3}\)

\(\Rightarrow-1< m\le\dfrac{1}{3}\)

Nguyễn Lê Phước Thịnh
8 tháng 8 2021 lúc 19:47

Chọn C

LIVERPOOL
Xem chi tiết
Chử Bảo Nhi
Xem chi tiết
Akai Haruma
22 tháng 6 2023 lúc 16:24

1.

$x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{(x-3)^2}=x+3+|x-3|$

$=x+3+(3-x)=6$

2.

$\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{(x+2)^2}-\sqrt{x^2}$

$=|x+2|-|x|=x+2-(-x)=2x+2$
3.

$\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}$

$=\sqrt{(\sqrt{x^2-1}+1)^2}-\sqrt{(\sqrt{x^2-1}-1)^2}$

$=|\sqrt{x^2-1}+1|+|\sqrt{x^2-1}-1|$

$=\sqrt{x^2-1}+1+|\sqrt{x^2-1}-1|$

 

Akai Haruma
22 tháng 6 2023 lúc 16:25

4.

$\frac{\sqrt{x^2-2x+1}}{x-1}=\frac{\sqrt{(x-1)^2}}{x-1}$

$=\frac{|x-1|}{x-1}=\frac{x-1}{x-1}=1$

5.

$|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=2-x+\frac{\sqrt{(x-2)^2}}{x-2}$
$=2-x+\frac{|x-2|}{x-2}|=2-x+\frac{2-x}{x-2}=2-x+(-1)=1-x$

6.

$2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\frac{\sqrt{(x-5)^2}}{x-5}$

$=2x-1-\frac{|x-5|}{x-5}$

Lê Bảo Ngọc
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 14:57

\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)

Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)

Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Ác Quỷ Bóng Đêm
Xem chi tiết
Ngô Hoài Thanh
30 tháng 8 2016 lúc 17:45

\(y^2=2+2\sqrt{1-x^2}\)

Do \(\sqrt{1-x^2}\ge0\)

Nên \(y^2\ge2\)

Dấu "=" xảy ra khi :x=1 hoặc x=-1