cho đường thẳng d: 2x-y+1=0. Phép tịnh tiến \(\overrightarrow{v}\left(a;6\right)\) biến d thành chính nó. tìm gtri a?
Bài 1: Trong mặt phẳng Oxy, cho đường thẳng \(d:2x-3y+4=0\) và điểm \(A(3;-1)\).Tìm tọa độ vecto \(\overrightarrow{v}\) có giá vuông góc với d biết phép tịnh tiến theo vecto \(\overrightarrow{v}\) biến đường thẳng d thành đường thẳng \(\Delta\) đi qua điểm A.
Bài 2: Tính tổng các nghiệm thuộc khoảng \(\left(0;2022\pi\right)\) của phương trình
\(\left(sinx+cosx\right)^2+2sin^2\dfrac{x}{2}=sinx\left(2\sqrt{3}sinx+4-\sqrt{3}\right)\)
Trong mặt phẳng tọa độ Oxy cho vectơ \(\overrightarrow{v}=\left(-1;2\right)\). Hai điểm \(A\left(3;5\right);B\left(-1;1\right)\) và đường thẳng d có phương trình \(x-2y+3=0\)
a) Tìm tọa độ của các điểm A', B' theo thứ tự là ảnh của A, B qua phép tịnh tiến theo \(\overrightarrow{v}\)
b) Tìm tọa độ của điểm C sao cho A là ảnh của C qua phép tịnh tiến theo \(\overrightarrow{v}\)
c) Tìm phương trình của đường thẳng d' là ảnh của d qua phép tịnh tiến theo \(\overrightarrow{v}\)
a) Giả sử A'=(x'; y'). Khi đó \(T_{\overrightarrow{v}}\left(A\right)=A'\Leftrightarrow\left\{{}\begin{matrix}x'=3-1=2\\y'=5+2=7\end{matrix}\right.\)
Do đó: A' = (2;7)
Tương tự B' =(-2;3)
b) Ta có: \(A=T_{\overrightarrow{v}}\left(C\right)\Leftrightarrow C=^T\overrightarrow{-v}\left(A\right)=\left(4;3\right)\)
c) Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến
Gọi M(x;y), M' = \(^T\overrightarrow{v}\) =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy \(^T\overrightarrow{v}\) (d) = d'.
Cách 2. Dùng tính chất của phép tịnh tiến
Gọi \(^T\overrightarrow{v}\)(d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó \(^T\overrightarrow{v}\) (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8.
a) Giả sử A'=(x'; y'). Khi đó
(A) = A' ⇔
Do đó: A' = (2;7)
Tương tự B' =(-2;3)
b) Ta có A = (C) ⇔ C=
(A) = (4;3)
c)Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến
Gọi M(x;y), M' = =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy
(d) = d'
Cách 2. Dùng tính chất của phép tịnh tiến
Gọi (d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó
(B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8
1. Phép tịnh tiến theo vecto \(\overrightarrow{v}\) biến đường thằng d: x+y=0 thành d':x+y-4=0. Biết \(\overrightarrow{v}\) cùng phương với vecto \(\overrightarrow{u}\) =(1;1). Tính độ dài vecto \(\overrightarrow{v}\)
2. Cho 2 đường thẳng d:x+y-1=0 và d':x+y-5=0. Phép tịnh tiến theo vecto \(\overrightarrow{u}\) biến đường thẳng d thành d'. Khi đó độ dài nhỏ nhất của vecto \(\overrightarrow{u}\)là bao nhiêu?
3. Cho 3 đường thẳng d:2x+y+3=0, d':2x+y-1=0. Có bao nhiêu vecto \(\overrightarrow{v}\)có độ dàu bằng 2 sao cho phép tịnh tiến theo vecto \(\overrightarrow{v}\)biến d thành d'
4. Cho 2 đường thẳng d; x+y+3=0, d':x+y+m=0. Biết có duy nhất một vecto \(\overrightarrow{v}\)có độ dài bằng \(\sqrt{2}\) sao cho phép tịnh tiến theo vecto \(\overrightarrow{v}\) biến d thành d'. Tìm m
1.
Do \(\overrightarrow{v}\) cùng phương với \(\overrightarrow{u}\) nên \(\overrightarrow{v}=\left(a;a\right)\) với a là số thực khác 0
Chọn \(M\left(0;0\right)\) là 1 điểm thuộc d
Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)
\(\left\{{}\begin{matrix}x_{M'}=a+0=a\\y_{M'}=a+0=a\end{matrix}\right.\) \(\Rightarrow M'\left(a;a\right)\)
Thay vào pt d' ta được:
\(a+a-4=0\Rightarrow a=2\)
\(\Rightarrow\overrightarrow{v}=\left(2;2\right)\)
\(\Rightarrow\left|\overrightarrow{v}\right|=2\sqrt{2}\)
2.
Gọi \(\overrightarrow{u}=\left(a;b\right)\)
Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d
Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow A'\in d'\)
Ta có: \(\left\{{}\begin{matrix}x_{A'}=a\\y_{A'}=b+1\end{matrix}\right.\)
Thay tọa độ A' vào pt d' ta được: \(a+b+1-5=0\Leftrightarrow a+b=4\)
Ta có:
\(\left|\overrightarrow{u}\right|=\sqrt{a^2+b^2}\ge\sqrt{\frac{1}{2}\left(a+b\right)^2}=2\sqrt{2}\)
\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=2\sqrt{2}\) khi \(a=b=2\)
3.
Gọi \(\overrightarrow{v}=\left(a;b\right)\Rightarrow a^2+b^2=4\) (1)
Gọi \(A\left(-1;-1\right)\) là 1 điểm thuộc d
Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow A'\in d'\)
Ta có: \(\left\{{}\begin{matrix}x_{A'}=-1+a\\x_{B'}=-1+b\end{matrix}\right.\)
Thay vào pt d':
\(2\left(a-1\right)+2\left(b-1\right)-1=0\)
\(\Leftrightarrow2a+2b=5\Rightarrow b=\frac{5-2a}{2}\)
Thế vào (1):
\(a^2+\left(\frac{5-2a}{2}\right)^2=4\)
\(\Leftrightarrow8a^2-20a+9=0\)
Pt trên có 2 nghiệm pb nên có 2 vecto thỏa mãn
Trong mặt phẳng Oxy, cho vectơ \(\overrightarrow{v}=\left(3;1\right)\) và đường thẳng d có phương trình \(2x-y=0\). Tìm ảnh của d qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O góc \(90^0\) và phép tịnh tiến theo vectơ \(\overrightarrow{v}\)
Cho đường thẳng d : 2 x - y + 1 = 0 . Để phép tịnh tiến theo v → biến đường thẳng d thành chính nó thì v → phải là véc tơ nào sau đây:
A. v → = - 1 ; 2
B. v → = 2 ; - 1
C. v → = 1 ; 2
D. v → = 2 ; 1
Chọn C
Phép tịnh tiến theo v → biến đường thẳng d thành chính nó khi và chỉ khi v → = 0 → hoặc v → là một vectơ chỉ phương của d. Từ phương trình đường thẳng d, ta thấy v → 1 ; 2 là một vectơ chỉ phương của d nên chọn đáp án C.
Cho vectơ \(\overrightarrow{v}\), đường thẳng d vuông góc với giá của \(\overrightarrow{v}\). Gọi d' là ảnh của d qua phép tịnh tiến theo vectơ \(\dfrac{1}{2}\overrightarrow{v}\). Chứng minh rằng phép tịnh tiến theo vectơ \(\overrightarrow{v}\) là kết quả của việc thực hiện liên tiếp phép đối xứng qua các đường thẳng d và d' ?
Lấy M tùy ý. Gọi (M) = M',
(M') = M''. Ta có
\(\overrightarrow{MM'}=\overrightarrow{MM'}+\overrightarrow{M'M''}=2\overrightarrow{M_oM'}+2\overrightarrow{M'M_1}=2\overrightarrow{M_oM_1}\)\(=2\dfrac{\overrightarrow{v}}{2}=\overrightarrow{v}\).
Vậy M'' = (M) =
(
(M)), với mọi M
Do đó phép tịnh tiến theo vectơ v là kết quả của việc thực hiện liên tiếp phép đối xứng qua các đường thẳng d và d'.
Trong mặt phẳng Oxy cho đường thẳng d có phương trình \(3x-5y+3=0\) và vectơ \(\overrightarrow{v}\left(2;3\right)\). Hãy viết phương trình đường thẳng d' là ảnh của d qua phép tịnh tiến theo vectơ \(\overrightarrow{v}\)
Gọi M′ ( x′ ; y′ ) ∈ d' là ảnh của M( x , y ) ∈ d qua phép tịnh tiến theo vecto ⃗v (2;3)
\(\Rightarrow\left\{{}\begin{matrix}x'=x+2\\y'=y+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=x'-2\\y=y'-3\end{matrix}\right.\)
do M (x' ; y') \(\in\) d nên
\(3x-5y+3=0\)
\(\Rightarrow3\left(x'-2\right)-5\left(y'-3\right)+3=0\)
\(\Leftrightarrow3x'-5y'+12=0\left(d'\right)\)
vậy \(M'\left(x';y'\right)\in d':3x'-5y'+12=0\)
Trong mặt phẳng Oxy cho đường thẳng d có phương trình 2 x - y + 1 = 0 . Phép tịnh tiến theo v → nào sau đây biến đường thẳng d thành chính nó?
A. v → = 2 ; 4
B. v → = 2 ; 1
C. v → = - 1 ; 2
D. v → = 2 ; - 4
Chọn đáp án A.
Phép tịnh tiến theo v → biến đường thẳng d thành chính nó khi vectơ v → cùng phương với vectơ chỉ phương của d. Mà d có VTCP v → = 2 ; 4 .
Tìm ảnh của đường thẳng (C):\(\left(x-1\right)^2+\left(y+5\right)^2=8\) qua phép tịnh tiến theo \(\overrightarrow{a}\)=(2,-1)
Biểu thức tọa độ của phép tịnh tiến \(T_{\vec{a}}\):
\(\left\{{}\begin{matrix}x'=x+2\\y'=y-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=x'-2\\y=y'+1\end{matrix}\right.\)
Vì \(M\left(x;y\right)\in C\): \(\left(x-1\right)^2+\left(y+5\right)^2=8\)
\(\Leftrightarrow\left(x'-3\right)^2+\left(y'+6\right)^2=8\)
\(\Leftrightarrow M'\left(x';y'\right)\in\left(C'\right):\left(x-3\right)^2+\left(y+6\right)^2=8\)
Vậy ảnh của \(\left(C\right)\) là \(\left(x-3\right)^2+\left(y+6\right)^2=8\)