Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Trang
Xem chi tiết
nguyễn hà trang
24 tháng 12 2016 lúc 22:44

3.|x+1|-2=4

3.|x+1|=4+2

3.|x+1|=6                                    

|x+1|=6:3

|x+1|=2

Trường hợp 1       x+1=2

x=2-1

x=1

trường hợp 2

x+1=-2

x=(-2)-1

x=-3

==> x thuộc {1; -3}

k mk nha chúc học tốt                                                                             

thùy linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2022 lúc 11:46

3: =>x(x+1)=0

=>x=0 hoặc x=-1

4: =>(2x-3)(x+2)=0

=>x=3/2 hoặc x=-2

6: =>6x=7 hoặc 6x=-7

=>x=7/6 hoặc x==7/6

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 21:59

a/ ĐKXĐ: \(x\ge1\)

Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm

b/ \(x\ge1\)

\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)

Đặt \(\sqrt{x-1}=a\ge0\) ta được:

\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)

- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)

- Với \(0\le a\le1\) ta được:

\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)

- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 22:03

c/ ĐKXĐ: \(x\ge\frac{49}{14}\)

\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)

\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)

\(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(7-\sqrt{14x-49}\ge0\)

\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)

Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 22:13

d/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}-1\right)^2}-2\sqrt{\left(\sqrt{2x-1}-2\right)^2}+3\sqrt{\left(\sqrt{2x-1}-3\right)^2}=4\)

\(\Leftrightarrow\left|\sqrt{2x-1}-1\right|-2\left|\sqrt{2x-1}-2\right|+3\left|\sqrt{2x-1}-3\right|=4\)

TH1: \(\sqrt{2x-1}\ge3\Rightarrow x\ge5\)

\(\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\sqrt{2x-1}-9=4\)

\(\Leftrightarrow\sqrt{2x-1}=5\)

\(\Leftrightarrow x=13\)

TH2: \(2\le\sqrt{2x-1}< 3\Rightarrow\frac{5}{2}\le x< 5\)

\(\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\left(3-\sqrt{2x-1}\right)=4\)

\(\Leftrightarrow\sqrt{2x-1}=2\Rightarrow x=\frac{5}{2}\)

TH3: \(1\le\sqrt{2x-1}< 2\Rightarrow1\le x< \frac{5}{2}\)

\(\sqrt{2x-1}-1-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=4\)

\(\Leftrightarrow4=4\) (luôn đúng)

TH4: \(\frac{1}{2}\le x< 1\)

\(1-\sqrt{2x-1}-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=4\)

\(\Leftrightarrow\sqrt{2x-1}=1\Rightarrow x=1\left(l\right)\)

Vậy nghiệm của pt là: \(\left[{}\begin{matrix}1\le x\le\frac{5}{2}\\x=13\end{matrix}\right.\)

Khách vãng lai đã xóa
thùy linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2022 lúc 13:12

1: =>(x+3)(x-5)=0

=>x=5 hoặc x=-3

2: =>(x-1)(5x-1)=0

=>x=1/5 hoặc x=1

5: =>(x-4)*x=0

=>x=0 hoặc x=4

10: =>(x+5)(x-3)=0

=>x=3 hoặc x=-5

9: =>(x-2)(x-4)=0

=>x=2 hoặc x=4

7: =>(x-6)(2x-1)=0

=>x=1/2 hoặc x=6

8: =>(2x-1)(3x-12)=0

=>x=4 hoặc x=1/2

linh
Xem chi tiết
Minh Triều
15 tháng 6 2015 lúc 19:11

(3x+4)2-(3x-1).(3x+1)=49​

<=> 9x2+24x+16-(9x2-1)=49

<=>9x2+24x+16-9x2+1=49

<=>24x+17=49

<=>24x     =32

<=>x        =4/3

Vậy ...

​(x+2).(x^2-2x+4)-x.(x+3).(x-3)

=x3+8-x(x2-9)

=x3+8-x3+9x

=9x+8

๖ACE✪Hoàngミ★Việtツ
20 tháng 8 2017 lúc 10:04

(3x+4)2-(3x-1).(3x+1)=49​

<=> 9x2+24x+16-(9x2-1)=49

<=>9x2+24x+16-9x2+1=49

<=>24x+17=49

<=>24x     =32

<=>x        =4/3

Vậy ...

​(x+2).(x^2-2x+4)-x.(x+3).(x-3)

=x3+8-x(x2-9)

=x3+8-x3+9x

=9x+8

Tuan Dat
Xem chi tiết
Thierry Henry
22 tháng 1 2019 lúc 19:15

a. \(\left(2x-1\right)\left(3x+2\right)\left(5-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+2=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{-2}{3}\\x=5\end{matrix}\right.\)

\(\Rightarrow S=\left\{\dfrac{1}{2};\dfrac{-2}{3};5\right\}\)

b. \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)\)

\(\Leftrightarrow3x\left(x-4\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

\(\Rightarrow S=\left\{0;4\right\}\)

c. \(16x^2-8x+1=4\left(x+3\right)\left(4x-1\right)\)

\(\Leftrightarrow\left(4x-1\right)^2-4\left(x+3\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\left(4x-1\right)\left(4x-1-4x-3\right)=0\)

\(\Leftrightarrow-4\left(4x-1\right)=0\Leftrightarrow4x-1=0\Leftrightarrow x=\dfrac{1}{4}\)

d. \(27x^2\left(x+3\right)-12\left(x^2+3x\right)=0\)

\(\Leftrightarrow27x^2\left(x+3\right)-12x\left(x+3\right)=0\)

\(\Leftrightarrow x\left(27x-12\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\27x-12=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\\x=-3\end{matrix}\right.\)

\(\Rightarrow S=\left\{0;\dfrac{4}{9};-3\right\}\)

e. \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)

\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(6x+1-x+2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(7x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\7x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=\dfrac{-3}{7}\end{matrix}\right.\)

\(\Rightarrow S=\left\{\dfrac{-1}{3};\dfrac{-3}{7}\right\}\)

g. \(\left(2x-1\right)^2=49\)

\(\Leftrightarrow2x-1=7\Leftrightarrow x=4\)

Nguyễnn Linhh
Xem chi tiết
Nguyễn Nam
7 tháng 1 2018 lúc 8:33

a) \(2^3:\left|x-2\right|=2\)

\(\Leftrightarrow8:\left|x-2\right|=2\)

\(\Leftrightarrow\left|x-2\right|=8:2\)

\(\Leftrightarrow\left|x-2\right|=4\)

Xét trường hợp 1: \(x-2=4\)

\(\Rightarrow x=4+2\)

\(\Rightarrow x=6\)

Xét trường hợp 2: \(x-2=-4\)

\(\Rightarrow x=-4+2\)

\(\Rightarrow x=-\left(4-2\right)\)

\(\Rightarrow x=-2\)

Vậy \(x=6\) hoặc \(x=-2\)

b)

Nghĩa Phạm trọng
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 9 2021 lúc 22:02

a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow2x=-7\)

hay \(x=-\dfrac{7}{2}\)

b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)

\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)

\(\Leftrightarrow24x=-13\)

hay \(x=-\dfrac{13}{24}\)

pham hong diep
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2020 lúc 22:24

Ta có: \(\left(2x+3\right)^2-4\left(x+1\right)\left(x-1\right)=49\)

\(\Leftrightarrow4x^2+12x+9-4\left(x^2-1\right)-49=0\)

\(\Leftrightarrow4x^2+12x-40-4x^2+4=0\)

\(\Leftrightarrow12x-36=0\)

\(\Leftrightarrow12x=36\)

hay x=3

Vậy: x=3

Nguyễn Ngọc Lộc
26 tháng 7 2020 lúc 22:25

Ta có : \(\left(2x+3\right)^2-4\left(x+1\right)\left(x-1\right)=49\)

=> \(4x^2+12x+9-4x^2+4=49\)

=> \(12x=36\)

=> x = 3

Vậy ...