Thu gọn biểu thức \(\sin^2\alpha+\cot^2\alpha.\sin^2\alpha\)
Rút gọn các biểu thức sau:
A= \(\dfrac{cos^2\alpha-sin^2\alpha}{cot^2\alpha-tan^2\alpha}-cos^2\alpha\)
B= \(\sqrt{sin^4\alpha+6cos^2\alpha+3cos^4\alpha}+\sqrt{cos^4\alpha+6sin^2\alpha+3sin^4\alpha}\)
\(A=\dfrac{cos^2a-sin^2a}{\dfrac{cos^2a}{sin^2a}-\dfrac{sin^2a}{cos^2a}}-cos^2a=\dfrac{cos^2a.sin^2a\left(cos^2a-sin^2a\right)}{\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)}-cos^2a\)
\(=cos^2a.sin^2a-cos^2a=cos^2a\left(sin^2a-1\right)=-cos^4a\)
\(B=\sqrt{\left(1-cos^2a\right)^2+6cos^2a+3cos^4a}+\sqrt{\left(1-sin^2a\right)^2+6sin^2a+3sin^4a}\)
\(=\sqrt{4cos^4a+4cos^2a+1}+\sqrt{4sin^4a+4sin^2a+1}\)
\(=\sqrt{\left(2cos^2a+1\right)^2}+\sqrt{\left(2sin^2a+1\right)^2}\)
\(=2\left(sin^2a+cos^2a\right)+2=4\)
Rút gọn các biểu thức:
a)\(\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
b)\(\cot^2\alpha-\cos^2\alpha.\cot^2\alpha\)
c)\(\sin\alpha.\cos\alpha\left(\tan\alpha+\cot\alpha\right)\)
d)\(\tan^2\alpha-\sin^2\alpha.\tan^2\alpha\)
a) khai triển được 2sin2+2cos2=2(sin2+cos2=2.1=2
b)cot2-cos2.cot2=cot2(1-cos2)=cot2.sin2=cos2/sin2.sin2=cos2
c)sin.cos(tan+cot)=sin.cos.tan+sin.cos.cot=sin.cos.sin/cos+sin.cos.cos/sin=sin2+cos2=1
d)tan2-tan2.sin2=tan2(1-sin2)=tan2.cos2=sin2/cos2.cos2=sin2
rút gọn biểu thức
a) \(\left(Sin\alpha+Cos\alpha\right)^2+\left(Sin\alpha-Cos\alpha\right)^2\)
b) \(Sin\alpha.cos\alpha\left(tan\alpha+cot\alpha\right)\)
c) \(cot^2\alpha-Cos^2\alpha\times Cot^2\alpha\)
d) \(tan^2\alpha-Sin^2\alpha\times tan^2\alpha\)
ai giúp e mấy câu này với ạ !!!
tui rất thích lượng giác:
a) = s2 + 2s.c +c2 +s2- 2s.c + c2 =1+1=2
b) = s.c(s/c + c/s) = s.c(s2 + c2) / s.c = 1
.............................bài nào cx dễ
( k có việc j khó, chỉ sợ lòng k bền....)
Rút gọn các biểu thức sau:
a) \(\frac{1}{{\tan \alpha + 1}} + \frac{1}{{\cot \alpha + 1}}\)
b) \(\cos \left( {\frac{\pi }{2} - \alpha } \right) - \sin \left( {\pi + \alpha } \right)\)
c) \(\sin \left( {\alpha - \frac{\pi }{2}} \right) + \cos \left( { - \alpha + 6\pi } \right) - \tan \left( {\alpha + \pi } \right)\cot \left( {3\pi - \alpha } \right)\)
\(a,\dfrac{1}{tan\alpha+1}+\dfrac{1}{cot\alpha+1}\\ =\dfrac{cot\alpha+1+tan\alpha+1}{\left(tan\alpha+1\right)\left(cot\alpha+1\right)}\\ =\dfrac{tan\alpha+cot\alpha+2}{tan\alpha\cdot cot\alpha+tan\alpha+cot\alpha+1}\\ =\dfrac{tan\alpha+cot\alpha+2}{tan\alpha+cot\alpha+2}\\ =1\)
\(b,cos\left(\dfrac{\pi}{2}-\alpha\right)-sin\left(\pi+\alpha\right)\\ =sin\alpha+sin\alpha\\ =2sin\alpha\)
\(c,sin\left(\alpha-\dfrac{\pi}{2}\right)+cos\left(-\alpha+6\pi\right)-tan\left(\alpha+\pi\right)cot\left(3\pi-\alpha\right)\\ =-sin\left(\dfrac{\pi}{2}-\alpha\right)+cos\left(\alpha\right)-tan\left(\alpha\right)cot\left(\pi-\alpha\right)\\ =-cos\left(\alpha\right)+cos\left(\alpha\right)+tan\left(\alpha\right)\cdot cot\left(\alpha\right)\\ =1\)
đơn giản biểu thức:
a, \(\left(\frac{sin\alpha+tan\alpha}{cos\alpha+1}\right)^2+1\)
b, \(tan\alpha\left(\frac{1+cos^2\alpha}{sin\alpha}-sin\alpha\right)\)
c, \(\frac{cot^2\alpha-cos^2\alpha}{cot^2a}+\frac{sin\alpha.cos\alpha}{cot\alpha}\)
\(a=\left(\frac{sina+\frac{sina}{cosa}}{cosa+1}\right)^2+1=\left(\frac{sina\left(cosa+1\right)}{cosa\left(cosa+1\right)}\right)^2+1\)
\(=tan^2a+1=\frac{1}{cos^2a}\)
\(b=\frac{sina}{cosa}\left(\frac{1+cos^2a-sin^2a}{sina}\right)=\frac{sina}{cosa}\left(\frac{2cos^2a}{sina}\right)=2cosa\)
\(c=1-\frac{cos^2a}{cot^2a}+\frac{sina.cosa}{\frac{cosa}{sina}}=1-cos^2a.\frac{sin^2a}{cos^2a}+\frac{sin^2a.cosa}{cosa}\)
\(=1-sin^2a+sin^2a=1\)
Rút gọn biểu thức: M=\(\left(1-\sin^2\alpha\right)\cot^2\alpha+\left(1-\cot^2\alpha\right)\)
\(M=cot^2\alpha\left(1-sin^2\alpha-1\right)+1=-sin^2\alpha.\dfrac{cos^2\alpha}{sin^2\alpha}+1=-cos^2\alpha+1=sin^2\alpha\)
Rút gọn biểu thức:
\(B=\left(1+tan^2\alpha\right)\left(1-sin^2\alpha\right)-\left(1+cot^2\alpha\right)\left(1-cos^2\alpha\right)\)
\(B=\left(1+\dfrac{sin^2a}{cos^2a}\right).cos^2a-\left(1+\dfrac{cos^2a}{sin^2a}\right).sin^2a\)
\(=\dfrac{\left(sin^2a+cos^2a\right)}{cos^2a}.cos^2a-\left(\dfrac{sin^2a+cos^2a}{sin^2a}\right).sin^2a\)
\(=1-1=0\)
Đơn giản biểu thức
a) \(G=\left(1-\sin^2\alpha\right)\cot^2\alpha+1-\cot^2\alpha\)
b) \(E=\dfrac{1-\sin^2\alpha}{2\sin\alpha.\cos\alpha}\)
c) \(P=\cot x+\dfrac{\sin x}{1+\cos x}\)
Rút gọn biểu thức:
a) A= \(\frac{1+2sin\alpha.cos\alpha}{cos^2\alpha-sin^2\alpha}\)
b) B= ( 1 + tan2α)( 1 + sin2α) - ( 1 + cot2α)( 1 - cos2α)
c) C= sin6α + cos6α + 3 sin2α. cos2α
a) \(\frac{1+2sina.cosa}{cos^2a-sin^2a}=\frac{1+sin2a}{cos2a}\)
b) \(B=\left(1+tan^2a\right)\left(1-sin^2a\right)-\left(1+cot^2a\right)\left(1-cos^2a\right)\)
\(=\left(1+\frac{sin^2a}{cos^2a}\right)\left(sin^2a+cos^2a-sin^2a\right)-\left(1+\frac{cos^2a}{sin^2a}\right)\left(cos^2a+sin^2a-cos^2a\right)\)
\(=\left(\frac{cos^2a+sin^2a}{cos^2a}\right).cos^2a-\left(\frac{sin^2a+cos^2a}{sin^2a}\right).sin^2a\)
\(=\frac{1}{cos^2a}.cos^2a-\frac{1}{sin^2a}.sin^2a=1-1=0\)
c)
\(C=\left(sin^2a+cos^2a\right)^3-3.sin^2a.cos^2a\left(sin^2a+cos^2a\right)+3sin^2a.cos^2a\)
\(=1-3sin^2a.cos^2a\left(1-1\right)=1\)