Giải BPT
\(\left|x-2\right|>2x^2-5x+2\)
giải các BPT sau
a) \(\left|\dfrac{x^2-5x+4}{x^2-4}\right|\le1\)
b) \(\left|x^2-3x+2\right|+x^2>2x\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
Giai cac bpt sau
a,\(\left(x+1\right)\left(2x-2\right)-3>-5x-\left(2x+1\right)\left(3-x\right)\)
b,\(\left(x-3^{ }\right)^2+4\left(2-x\right)>\left(x+7\right)\)
a: \(\Leftrightarrow2x^2-2-3>-5x+\left(2x+1\right)\left(x-3\right)\)
\(\Leftrightarrow2x^2-5>-5x+2x^2-6x+x-3\)
\(\Leftrightarrow2x^2-5>2x^2-10x-3\)
=>-5>-10x-3
=>5<10x+3
=>10x+3>5
=>10x>2
hay x>1/5
b: \(\Leftrightarrow x^2-6x+9+8-4x>x+7\)
\(\Leftrightarrow x^2-10x+17-x-7>0\)
\(\Leftrightarrow x^2-11x+10>0\)
=>x>10 hoặc x<1
a: ⇔2x2−2−3>−5x+(2x+1)(x−3)⇔2x2−2−3>−5x+(2x+1)(x−3)
⇔2x2−5>−5x+2x2−6x+x−3⇔2x2−5>−5x+2x2−6x+x−3
⇔2x2−5>2x2−10x−3⇔2x2−5>2x2−10x−3
=>-5>-10x-3
=>5<10x+3
=>10x+3>5
=>10x>2
hay x>1/5
b: ⇔x2−6x+9+8−4x>x+7⇔x2−6x+9+8−4x>x+7
⇔x2−10x+17−x−7>0⇔x2−10x+17−x−7>0
⇔x2−11x+10>0⇔x2−11x+10>0
=>x>10 hoặc x<1
Giai các bpt sau
a,\(\dfrac{5x^2-3}{5}+\dfrac{3x-1}{4}< \dfrac{x\left(2x+3\right)}{2}-5\)
b,\(\dfrac{5x-2}{-3}\)\(-\dfrac{2x^2-x}{-2}>\dfrac{x\left(1-3x\right)}{-3}-\dfrac{5x}{-4}\)
a: \(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)< 10x\left(2x+3\right)-100\)
\(\Leftrightarrow20x^2-12x+15x-5< 20x^2+30x-100\)
=>3x-5<=30x-100
=>30x-100>3x-5
=>27x>95
hay x>95/27
b: \(\Leftrightarrow4\left(5x-2\right)-6\left(2x^2-x\right)< 4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-8-12x^2+6x< 4x-12x^2-15x\)
=>26x-8<-11x
=>37x<8
hay x<8/37
giải bpt :
a, \(x^2-3\left|x\right|+2\le0\)
b, \(2x^2-\left|5x-3\right|\le0\)
c, \(\sqrt{\left(x-3\right)\left(8-x\right)}+26\ge-x^2+11x\)
c) Đặt \(t=\sqrt{\left(x-3\right)\left(8-x\right)}\left(t\ge0\right)=\sqrt{-x^2+11x-24}\Rightarrow t^2-2=-x^2+11x-26\)
\(\left(1\right)\Rightarrow t\ge t^2-2\Leftrightarrow t^2-t-2\le0\Leftrightarrow-1\le t\le2\Rightarrow0\le t\le2\Rightarrow0\le-x^2+11x-24\le4\Leftrightarrow\left\{{}\begin{matrix}3\le x\le8\\\left[{}\begin{matrix}x\le4\\x\ge7\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\le x\le4\\7\le x\le8\end{matrix}\right.\)
Vậy tập nghiệm của bpt là \([3;4]\cup[7;8]\)
Giải bpt sau:
\(\left|x^2-5x+4\right|>x-1\)
$\begin{cases}|x^2-5x+4|>x-1\\x>1\\\end{cases}$
$\to \begin{cases}(x^2-5x+4)^2>(x-1)^2\\x>1\\\end{cases}$
$\to \begin{cases}(x-1)^2(x-4)^2>(x-1)^2\\x>1\\\end{cases}$
$\to \begin{cases}(x-1)^2[(x-4)^2-1]>0\\x>1\\\end{cases}$
$\to \begin{cases}(x-4)^2-1>0\\x>1\\\end{cases}$
$\to \begin{cases}(x-5)(x-3)>0\\x>1\\\end{cases}$
$\to \begin{cases}\left[ \begin{array}{l}x>5\\x<3\end{array} \right.\\x>1\\\end{cases}$
$\to \left[ \begin{array}{l}1<x<3\\x>5\end{array} \right.$
Vậy bất phương trình có tập nghiệm $S=(1,3]∩(5,∞]$
giải các bpt sau
a. \(\sqrt{-x^2+6x-5}>8-2x\)
b. \(\sqrt{\left(x+5\right)\left(3x+4\right)}< 4\left(x-1\right)\)
c. \(2x^2+\sqrt{x^2-5x-6}>10x+15\)
bình phương lên để mất căn rồi lập bảng xét dấu nha bạn
giúp mình giải bpt vs
\(\dfrac{\left|2x-1\right|-x}{2x}>1;\dfrac{2-\left|x-2\right|}{x^2-1}\ge0;\dfrac{\sqrt{x+4}-2}{4-9x^2}\le0;\dfrac{x^2-2x-3}{\sqrt[3]{3x-1}+\sqrt[3]{4-5x}}\ge0;\)\(3x^2-10x+3\ge0;\left(\sqrt{2}-x\right)\left(x^2-2\right)\left(2x-4\right)< 0;\dfrac{1}{x+9}-\dfrac{1}{x}>\dfrac{1}{2};\dfrac{2}{1-2x}\le\dfrac{3}{x+1}\)
Giải bpt sau
a, \(\left(x+3\right)^2-\left(x-3\right)^2\le3\left(x+1
\right)\)
b, \(2\left(x+3\right).\left(x+4\right)>\left(x-2\right)^2+\left(x-1\right)^2\)
c, \(5x^2-18x+19-\left(2x-3\right)^2>0\)
d, \(\dfrac{\left(3x-2\right)^2}{4}-\dfrac{3\left(x-2\right)}{8}-1>\dfrac{-15x\left(5-3x\right)}{2}\)
e, \(2x^2+2x+2-\dfrac{15\left(x-1\right)}{2}-1>2x\left(x-2,75\right)\)
g, \(\dfrac{5x^2-3}{5}+\dfrac{3x-1}{4}< \dfrac{x\left(2x+3\right)}{2}-5\)
1. Giải các BPT
a) \(\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\)
b)\(\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}\ge\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\)
c) (x+3)2\(\le\)x2-7
\(\text{a) }\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\\ \Leftrightarrow4\left(5x^2-3x\right)+5\left(3x+1\right)< 10x\left(2x+1\right)-15\\ \Leftrightarrow20x^2-12x+15x+5< 20x^2+10x-15\\ \Leftrightarrow20x^2+3x-20x^2-10x< -15-5\\ \Leftrightarrow-7x< -20\\ \Leftrightarrow x>\dfrac{20}{7}\)
Vậy bất phương trình có nghiệm \(x>\dfrac{20}{7}\)
\(\text{b) }\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}\ge\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\\ \Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)\ge4x\left(1-3x\right)-15x\\ \Leftrightarrow20x-80-12x^2-6x\ge4x-12x^2-15x\\ \Leftrightarrow-12x^2+14x+12x^2+11x\ge80\\ \Leftrightarrow25x\ge80\\ \Leftrightarrow x\ge\dfrac{16}{5}\)
Vậy bất phương trình có nghiệm \(x\ge\dfrac{16}{5}\)
\(\text{c) }\left(x+3\right)^2\le x^2-7\\ \Leftrightarrow x^2+6x+9\le x^2-7\\ \Leftrightarrow x^2+6x-x^2\le-7-9\\ \Leftrightarrow6x\le-16\\ \Leftrightarrow x\le-\dfrac{8}{3}\)
Vậy bất phương trình có nghiệm \(x\le-\dfrac{8}{3}\)