Giải BPT
\(\sqrt{2x+7}-\sqrt{5-x}\ge\sqrt{3x-2}\)
giải BPT :
a. \(\sqrt[3]{x+6}+\sqrt{x-1}\ge x^2-1\)
b.2\(\sqrt[3]{x+4}+\sqrt{2x+7}+x^2+8x+13\)
c.\(4x^3+5x^2+1\ge\sqrt{3x+1}-3x\)
giúp với ạ
giải bpt \(\frac{2x^3+3x}{7-2x}\ge\sqrt{2-x}\)
giải bpt
\(\left(\sqrt{x+4}-1\right)\sqrt{x+2}\ge\frac{x^3+4x^2+3x-2\left(x+3\right)\sqrt[3]{2x+3}}{\left(\sqrt[3]{2x+3}-3\right)\left(\sqrt{x+4}+1\right)}\)
1. Giải bpt: \(\sqrt{x-2}-2\ge\sqrt{2x-5}-\sqrt{x+1}\)
2. Với \(x\in\left(0;1\right)\) tìm Min \(P=\dfrac{\sqrt{1-x}\left(1+\sqrt{1-x}\right)}{x}+\dfrac{5}{\sqrt{1-x}}\)
`sqrt{x-2}-2>=sqrt{2x-5}-sqrt{x+1}`
`đk:x>=5/2`
`bpt<=>\sqrt{x-2}+\sqrt{x+1}>=\sqrt{2x-5}+2`
`<=>x-2+x+1+2\sqrt{(x-2)(x+1)}>=2x-5+4+4\sqrt{2x-5}`
`<=>2x-1+2\sqrt{(x-2)(x+1)}>=2x-1+4\sqrt{2x-5}`
`<=>2\sqrt{(x-2)(x+1)}>=4\sqrt{2x-5}`
`<=>sqrt{x^2-x-2}>=2sqrt{2x-5}`
`<=>x^2-x-2>=4(2x-5)`
`<=>x^2-x-2>=8x-20`
`<=>x^2-9x+18>=0`
`<=>(x-3)(x-6)>=0`
`<=>` \(\left[ \begin{array}{l}x \ge 6\\x \le 3\end{array} \right.\)
Kết hợp đkxđ:
`=>` \(\left[ \begin{array}{l}x \ge 6\\\dfrac52 \le x \le 3\end{array} \right.\)
giải bpt:
1. \(\frac{\sqrt{-3x^2+x+4}+2}{x}< 2\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
3. \(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}\le\sqrt{4x^2-18x=18}\)
4. 4(x+1)2 \(\ge\) (2x +10)( 1- \(\sqrt{3+2x}\))2
5. \(\sqrt{1+x}-\sqrt{1-x}\ge x\)
giải bpt sau : \(\sqrt{x^2-3x+20}+\sqrt{x^2-4x+3}\ge\sqrt{x^2-5x+4}\)
Giải bpt
\(\frac{x+2}{\sqrt{2x+3}-\sqrt{x+1}}\ge\sqrt{2x^2+5x+3}+1\)
Giải BPT \(\sqrt{x^2+2x-3}-2\ge\sqrt{x+3}+\sqrt{x-1}\)
Giai bpt :
\(\sqrt{x^2-4x+3}-\sqrt{2x^2-3x+1}\ge x-1\)
Nhấn máy tính:
+ giải hpt x2-4x+3: mode=> 5:EQN=> số 3=> 1=> = => -4 => = => 3=> X1=3 => = => X2=1
=> Thay vào=> Đưa vô căn bậc 2.
+ giải hpt 2x2 -3x+1 tương tự như trên.
=> Sau đó thay vô. tính ra
Xin lỗi mình chỉ biết nhiêu đây. lớp 7. Thông cảm.