Giải bất phương trình :
\(3^{\sqrt{x^2-2x}}\ge\left(\frac{1}{3}\right)^{x-\sqrt{x^2-2x+1}}\)
Giải bft ( lập bảng xét dấu nếu cần )
1. \(\sqrt{x^2-1}\ge\sqrt{2x^2+2x}\)
2. (x+4)(x+1) - \(3\sqrt{x^2+5x+2}< 6\)
Bài 2: Xét sự tương đương của các cặp BPT sau
a, \(4x-6+\frac{1}{x-2}\ge2+\frac{1}{x-2}\) và \(4x-8\ge0\)
b, \(3x-2+\frac{1}{x-3}\ge1+\frac{1}{x-3}\) và \(3x-3\ge0\)
c, \(x+4\ge0\) và \(\left(x-1\right)^2\left(x+4\right)>0\)
d,\(\left(x^2-4x+5\right)\left(x-5\right)>0\) và \(x-5>0\)
e, \(x-12\ge0\) và \(\left(x-2\right)^2\ge0\)
f, \(\sqrt{\left(x-1\right)\left(x-2\right)}\ge x\) và \(\sqrt{x-1}.\sqrt{x-2}\ge x\)
Bài 3. Giải bất phương trình
a, \(|5x – 3| < 2\)
b, \(\left|3x-2\right|\ge6\)
c, \(\left|2x-1\right|\le x+2\)
d, \(\left|3x+7\right|>2x+3\)
e, \(\sqrt{x-3}\ge\sqrt{3-x}\)
f, \(\sqrt{x-1}< 3+\sqrt{x-1}\)
g, \(\frac{x-2}{\sqrt{x-4}}\ge\frac{4}{\sqrt{x-4}}\)
h, \(\left(x+5\right)\sqrt{\left(x-3\right)\left(x^2-10x+25\right)}>0\)
Giải bpt:
a) \(\sqrt{2x^2-5x+2}\) +x \(\le\) 2
b) \(\frac{1}{x^2-5x+4}\)<\(\frac{1}{x^2-7x+10}\)
giải bất phương trình
a)\(\sqrt{x+18}\)<\(2-x\)
b)\(x\ge\sqrt{24-5x}\)
c)\(1-\sqrt{13-3x^2}\) >2x
d)4(x-1)+\(\frac{1}{x-1}\ge\frac{x}{x-1}+2\)
Giải bất phương trình
\(\sqrt{x^2-2x-3}+\sqrt{x^2-1}\ge\sqrt{x^2+4x+3}\)
Bài 1. Tìm điều kiện các BPT sau
a, \(\sqrt{20-x}>\sqrt{3x-6}+1\)
b, \(\frac{\sqrt{9-x^2}}{x-1}>\frac{1}{\sqrt{x}}+1\)
c, \(x+\frac{x+1}{\sqrt{x-4}}>2-\frac{2}{x^2-25}\)
d, \(\sqrt{x}>\sqrt{-x}\)
e, \(3x+\frac{4}{\sqrt{x-5}}\le9+\frac{x}{x-6}\)
f, \(\frac{x+2}{10+3x^2}\ge7+\frac{4}{\left(3x+9\right)^2}\)
g, \(\frac{\sqrt{x+2}}{\sqrt{x-2}}+\frac{1}{\left(x-4\right)\left(x+6\right)}\le\frac{3}{\sqrt{8-x}}\)
h, \(\frac{\sqrt{x+6}}{\left|x\right|-\sqrt{x+6}}\ge\sqrt{16-2x}\)
giải BPT sau
\(4x^2-\sqrt{2x^3+2x^2+x+1}>6x+4\)
Giải bất phương trình: \((x+2).\sqrt{(3x+3)-2\sqrt{x+1}}+\sqrt{2x^2+5x+3}\ge1\)