giải hệ phương trình \(\begin{cases}x+\dfrac{1}{y}=\dfrac{-1}{2}\\2x-\dfrac{3}{y}=\dfrac{-7}{2}\end{cases}\)
GIẢI HỆ PHƯƠNG TRÌNH
(GIẢI GIÚP EM VS MỌI NGƯỜI)
1, \(\begin{cases} x(y+z)=8 \\ y(x+z)=18\\ z(x+y)=20 \end{cases}\)
2, \(\begin{cases} \dfrac{xy}{x+y} =\dfrac{8}{3}\\ \dfrac{yz}{z+y} =\dfrac{12}{5}\\ \dfrac{xz}{x+z} =\dfrac{24}{7} \end{cases} \)
3, \(\begin{cases} x^{2} + 2yz=x\\ y^{2} + 2xz=y\\ z^{2} + 2xy=z\\ \end{cases}\)
4, \(\begin{cases} \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} =2\\ \dfrac{2}{xy} -\dfrac{1}{z^{2}} =4 \end{cases} \)
Giúp em giải các hệ phương trình này với
a)\(\begin{cases}x^4+2y^3-x=-\dfrac{1}{4}+3\sqrt{3}\\ y^4+2x^3-y=-\dfrac{1}{4}-3\sqrt{3}\end{cases}\)
b) \(\begin{cases} x+\dfrac{78y}{x^2+y^2}=20\\ y+\dfrac{78x}{x^2+y^2}=15\end{cases}\)
c) \(\begin{cases}\left(1-\dfrac{12}{y+3x}\right)\cdot \sqrt{x}=2\\ \left(1+\dfrac{12}{y+3x}\right)\cdot\sqrt{y}=6 \end{cases}\)
d) \(\begin{cases} \sqrt{x+1}+\sqrt[4]{x-1}-\sqrt{y^4+2}=y\\ x^2+2x(y-1)+y^2-6y+1=0\end{cases}\)
e) \(\begin{cases} \sqrt{4x^2+(4x-9)(x-y)}+\sqrt{xy}=3y\\ 4\sqrt{(x+2)(y+2x)}=3(x+3)\end{cases}\)
giải phương trình
c)\(\begin{cases} 3x+5y=1\\ 2x-y=-8 \end{cases} \)d)\(\begin{cases} \dfrac{1}{x}-\dfrac{1}{y}=1\\ \dfrac{3}{x}+\dfrac{4}{y}=5 \end{cases} \)
\(c,\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x+10y=2\\6x-3y=-24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}13y=26\\6x-3y=-24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\6x-3.2=-24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-3\end{matrix}\right.\)
\(d,\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\left(I\right)\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\left(x\ne0\right)\\\dfrac{1}{y}=b\left(y\ne0\right)\end{matrix}\right.\)
\(\left(I\right)\Rightarrow\left\{{}\begin{matrix}a-b=1\\3a+4b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-3b=3\\3a+4b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-7b=-2\\3a+4b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{2}{7}\\3a+4.\dfrac{2}{7}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{2}{7}\\a=\dfrac{9}{7}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{2}{7}\Leftrightarrow x=\dfrac{7}{2}\\\dfrac{1}{y}=\dfrac{9}{7}\Leftrightarrow y=\dfrac{7}{9}\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+10y=2\\6x-3y=-24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13y=26\\2x-y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-3\end{matrix}\right.\)
d. \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\left(x\ne0\right)\\\dfrac{1}{y}=b\left(y\ne0\right)\end{matrix}\right.\)
hpt \(\Leftrightarrow\left\{{}\begin{matrix}a-b=1\\3a+4b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a-3b=3\\3a+4b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7b=-2\\a-b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{2}{7}\\a=\dfrac{9}{7}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{9}{7}\\\dfrac{1}{y}=\dfrac{2}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{9}\\y=\dfrac{7}{2}\end{matrix}\right.\)
1
a) Giải hệ phương trình:
\(\begin{cases}\dfrac{x}{3}+\dfrac{y-4}{2}=\dfrac{y+2}{6}\\\dfrac{x-1}{2}=\dfrac{y-1}{3}\end{cases}\)
b) Với giá trị nào của m thì hệ phương trình:
\(\begin{cases}2x+y=1\\x-my=5\end{cases}\)
Có nghiệm duy nhất ? Vô nghiệm ?
b)**Phương trình có một nghiệm duy nhất
↔ 2 ≠ \(\dfrac{-1}{m}\)
↔ 2m≠ -1
↔m ≠ \(\dfrac{-1}{2}\)
***Phương trình vô nghiệm
↔ 2= \(\dfrac{-1}{m}\) ≠ \(\dfrac{1}{5}\)
↔\(\left\{{}\begin{matrix}2=\dfrac{-1}{m}\\\dfrac{-1}{m}\ne\dfrac{1}{5}\end{matrix}\right.\)
↔\(\left\{{}\begin{matrix}m=\dfrac{-1}{2}\left(nhận\right)\\m\ne-5\end{matrix}\right.\)
Vậy.............
Giải hệ\(\begin{cases} \dfrac{xy}{x+y}=\dfrac{2}{3}\\ \dfrac{yz}{y+z}=\dfrac{3}{2}\\ \dfrac{xz}{x+z}=\dfrac{6}{7} \end{cases} \)
Mọi người giúp mình giải hệ phương trình này bằng một cách dễ hiểu nhất với!Cảm ơn!
\(\begin{cases} \dfrac{5}{y}-\dfrac{7}{y}=9\\ \dfrac{4}{x}-\dfrac{9}{y}=35 \end{cases} \)
\(\left\{{}\begin{matrix}\dfrac{5}{y}-\dfrac{7}{y}=9\\\dfrac{4}{x}-\dfrac{9}{y}=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-2}{y}=9\\\dfrac{4}{x}-\dfrac{9}{y}=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{9}\\\dfrac{4}{x}-\dfrac{9}{-\dfrac{2}{9}}=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{9}\\\dfrac{4}{x}=-\dfrac{11}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{2}{9}\\x=-\dfrac{8}{11}\end{matrix}\right.\)
Vậy....
Ta có: \(\left\{{}\begin{matrix}\dfrac{5}{x}-\dfrac{7}{y}=9\\\dfrac{4}{x}-\dfrac{9}{y}=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{20}{x}-\dfrac{28}{y}=36\\\dfrac{20}{x}-\dfrac{45}{y}=175\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{17}{y}=-139\\\dfrac{4}{x}-\dfrac{9}{y}=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-17}{139}\\\dfrac{4}{x}=-\dfrac{656}{17}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{17}{139}\\x=-\dfrac{17}{164}\end{matrix}\right.\)
giải hệ phương trình :\(\begin{cases} y = (x)^{2}\\ z = xy\\ \dfrac{1}{x} = \dfrac{1}{y} + \dfrac{6}{z} \end{cases}\)
Giải hpt: \(\begin{cases} x^{2}+\dfrac{1}{y^{2}}+\dfrac{x}{y}=3\\ x+\dfrac{1}{y}+\dfrac{x}{y}=3 \end{cases}\)
<=>\(\left\{{}\begin{matrix}\left(x+\dfrac{1}{y}\right)^2-\dfrac{2x}{y}+\dfrac{x}{y}=3\left(1\right)\\x+\dfrac{1}{y}+\dfrac{x}{y}=3\left(2\right)\end{matrix}\right.\)
cộng vế với vế của (1) và (2) ta được :
(x+\(\dfrac{1}{y}\))2 +( 1+\(\dfrac{1}{y}\)) = 6
(x +\(\dfrac{1}{y}\))2 +(1+\(\dfrac{1}{y}\)) - 6 = 0
đặt t =x +\(\dfrac{1}{y}\) rồi giải phương trình bậc 2 theo t . tìm ra t thế x theo y vào hệ đã cho ta tìm được x và y .< trước khi làm bài này phải có ĐK y#0>
Giải hệ PT sau:
\(\begin{cases} \dfrac{1}{2}x - y = 1\\ x - 2y = 2 \end{cases}\)
\(\left\{{}\begin{matrix}\dfrac{1}{2}x-y=1\\x-2y=2\end{matrix}\right.=>\left\{{}\begin{matrix}\dfrac{1}{2}x-y=1\\\dfrac{1}{2}x-y=1\end{matrix}\right.\)
=> phương trình có vô số nghiệm