a/3(6-2x)=0
b/30%.x-0,5=-2,75
Bài 1:
a) (x-1/3)^2=0
b) (x-4)^2=16
c) (2x-1)^3= -8
Bài 2:
a) (-1/30)^0
b) (3 1/4)^2
c) (-1 3/4)^2
d) (3/7)^20 : (9/49)^6
e) 3^2.5^2 .(2/3)^2
\(1,\\ a,\Leftrightarrow x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\ b,\Leftrightarrow\left[{}\begin{matrix}x-4=4\\x-4=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=0\end{matrix}\right.\\ c,\Leftrightarrow2x+1=-2\Leftrightarrow x=-\dfrac{3}{2}\\ 2,\\ a,=1\\ b,=\left(\dfrac{13}{4}\right)^2=\dfrac{169}{16}\\ c,=\left(-\dfrac{7}{4}\right)^2=\dfrac{49}{16}\\ d,=\left(\dfrac{3}{7}\right)^{20}:\left(\dfrac{3}{7}\right)^{12}=\left(\dfrac{3}{7}\right)^8=...\\ e,=\left(3\cdot5\cdot\dfrac{2}{3}\right)^2=10^2=100\)
a, x+7=2 và 1/3 - (2x-2/3)
b,-7/6-x=1/6+5/6. x
c,x-30%x=-1 và 1/5
d, 4/3-(0,5+2/3x)=1/6
giải phương trình tích
a/(x - 2)(x + 3)=0
b/(x - 7)(2 + x)=0
c/(4x + 2)(3x - 4)
d/(2x +1)(x - 3)
e/(0,1x - 3)(x + 0,5)
f/(0,2x - 0,4)(0,1x+0,7)
a: =>x-2=0 hoặc x+3=0
=>x=2 hoặc x=-3
b:=>x-7=0 hoặc x+2=0
=>x=7 hoặc x=-2
c: =>4x+2=0 hoặc 3x-4=0
=>x=4/3 hoặc x=-1/2
d: =>2x+1=0 hoặc x-3=0
=>x=3 hoặc x=-1/2
a)
`(x-2)(x+3)=0`
`<=> x-2=0` hoặc `x+3=0`
`<=>x=2` hoặc `x=-3`
b)
`(x-7)(2+x)=0`
`<=>x-7=0` hoặc `2+x=0`
`<=>x=7` hoặc `x=-2`
c)
`(4x+2)(3x-4)=0`
`<=>4x+2=0` hoặc `3x-4=0`
`<=>x=-1/2` hoặc `x=4/3`
d)
`(2x+1)(x-3)=0`
`<=>2x+1=0` hoặc `x-3=0`
`<=>x=-1/2` hoặc `x=3`
e)
`(0,1x-3)(x+0,5)=0`
`<=>0,1x-3=0` hoặc `x+0,5=0`
`<=>x=30` hoặc `x=-0,5`
f)
`(0,2x-0,4)(0,1x+0,7)=0`
`<=>0,2x-0,4=0` hoặc `0,1x+0,7=0`
`<=>x=2` hoặc `x=-7`
a,(x-3)ngũ2+2x-6=0
b,x+3/x-3+48/9-x ngũ2=x-3/x+3
a) \(\left(x-3\right)^2+2x-6=0\)
\(\Leftrightarrow x^2-6x+9+2x-6=0\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
b) \(\dfrac{x+3}{x-3}+\dfrac{48}{9-x^2}=\dfrac{x-3}{x+3}\) (ĐKXĐ: \(x\ne\pm3\))
\(\Leftrightarrow\dfrac{x+3}{x-3}-\dfrac{48}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x+3}\)
\(\Leftrightarrow\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}-\dfrac{48}{\left(x+3\right)\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\)
\(\Leftrightarrow x^2+6x+9-48=x^2-6x+9\)
\(\Leftrightarrow x^2-x^2+6x+6x+9-9-48=0\)
\(\Leftrightarrow12x-48=0\)
\(\Leftrightarrow12x=48\)
\(\Leftrightarrow x=\dfrac{48}{12}\)
\(\Leftrightarrow x=4\left(tm\right)\)
a: (x-3)^2+2x-6=0
=>(x-3)^2+2(x-3)=0
=>(x-3)(x-3+2)=0
=>(x-3)(x-1)=0
=>x=3 hoặc x=1
b:
ĐKXĐ: x<>3; x<>-3
\(\dfrac{x+3}{x-3}+\dfrac{48}{9-x^2}=\dfrac{x-3}{x+3}\)
=>\(\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{48}{\left(x-3\right)\cdot\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x+3\right)^2}\)
=>(x+3)^2-48=(x-3)^2
=>x^2+6x+9-48=x^2-6x+9
=>6x-39=-6x+9
=>12x=48
=>x=4(nhận)
\(a,\left(x-3\right)^2-2x+6=0\\ \Leftrightarrow x^2-6x+9-2x+6=0\\ \Leftrightarrow x^2-8x+15=0\\ \Leftrightarrow x^2-3x-5x+15=0\\ \Leftrightarrow x\left(x-3\right)-5\left(x-3\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\\ Vậy:S=\left\{5;3\right\}\\ b,\dfrac{x+3}{x-3}+\dfrac{48}{9-x^2}=\dfrac{x-3}{x+3}\left(ĐKXĐ:x\ne\pm3\right)\\ \Leftrightarrow\dfrac{\left(x+3\right)^2-48-\left(x-3\right)^2}{x^2-9}=0\\ \Leftrightarrow\left[\left(x+3-x+3\right)\left(x+3+x-3\right)\right]-48=0\\ \Leftrightarrow6.2x-48=0\\ \Leftrightarrow12x=48\\ \Leftrightarrow x=4\left(TM\right)\\ Vậy:S=\left\{4\right\}\)
Tìm x , Biết
a) (x-4) x - (x-3)^2=0
b) 3x-6 = x^2-16
c) (2x-3)^2 - 49=0
d) 2x (x-5) - 7 (5-x)=0
a) \(\Leftrightarrow x^2-4x-x^2+6x-9=0\\ \Leftrightarrow2x=9\\ \Leftrightarrow x=4,5\)
b) \(\Leftrightarrow x^2-3x-10=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(5x+10\right)=0\\ \Leftrightarrow x\left(x+2\right)-5\left(x+2\right)=0\\ \left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
c) \(\Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\\ \Leftrightarrow\left(2x-10\right)\left(2x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
d) \(\Leftrightarrow\left(2x+7\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\end{matrix}\right.\)
Bài 1: Tính
1) 2,75 - 5/6 × 2/5
2) 1,25 - ( 5/6 - 0,75 ) - 3/5
3) 4/9 × 0,75 + 8/5 + 3,125
4) 1,125 - 4/7 - 0,12
5) (1/3 + 0,4) × 3,5 + (1/6 + 0,75) × 6/5
Bài 2: Tìm x, biết
1) 1,25 × x - 0,75 = 1/3
2) x - 0,25 × 2/9 = 1/6 × 0,5
3) 3,375 × 8/9 - x = 5/6
4) 1,75 × 4/5 + x = 4,5
1) 2,75 - 5/6 × 2/5 = 2,75 - (5/6) × (2/5) = 2,75 - 1/3 = 2,75 - 0,33 = 2,42
2) 1,25 - (5/6 - 0,75) - 3/5 = 1,25 - (5/6 - 0,75) - 3/5 = 1,25 - (5/6 - 3/4) - 3/5 = 1,25 - (5/6 - 9/12) - 3/5 = 1,25 - (10/12 - 9/12) - 3/5 = 1,25 - 1/12 - 3/5 = 1,25 - 0,08 - 0,6 = 1,25 - 0,68 = 0,57
3) 4/9 × 0,75 + 8/5 + 3,125 = (4/9) × 0,75 + 8/5 + 3,125 = 0,44 + 8/5 + 3,125 = 0,44 + 1,6 + 3,125 = 0,44 + 4,725 = 5,165
4) 1,125 - 4/7 - 0,12 = 1,125 - (4/7) - 0,12 = 1,125 - 0,57 - 0,12 = 0,435 - 0,12 = 0,315
5) (1/3 + 0,4) × 3,5 + (1/6 + 0,75) × 6/5
giải các phương trình sau
a) x2+4x-5=0
b) x2-x-12=0
c) (2x-7)2-6(2x-7)(x-3)=0
`a,x^2 +4x-5=0`
`<=> x^2-x+5x-5=0`
`<=> x(x-1)+5(x-1)=0`
`<=>(x-1)(x+5)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
`b, x^2 -x-12=0`
`<=> x^2 +3x-4x-12=0`
`<=>(x^2+3x)-(4x+12)=0`
`<=>x(x+3)-4(x+3)=0`
`<=>(x+3)(x-4)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
`c, (2x-7)^2 - 6(2x-7)(x-3)=0`
`<=>(2x-7)(2x-7 -6x+18)=0`
`<=>(2x-7) ( -4x+11)=0`
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\-4x+11=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=7\\-4x=-11\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{11}{4}\end{matrix}\right.\)
a: =>(x+5)(x-1)=0
=>x=1 hoặc x=-5
b: =>(x-4)(x+3)=0
=>x=4 hoặc x=-3
c: =>(2x-7)(2x-7-6x+18)=0
=>(2x-7)(-4x+11)=0
=>x=11/4 hoặc x=7/2
giải các phương trình sau
a) (3x+1)2-6(2x-7)(x-3)=0
b) (3x+1)(x-3)2=(3x+1)(2x-5)2
c) 0,75x(x+5)=(x+5)(3-1,25x)
a: =>9x^2+6x+1-6(2x^2-13x+21)=0
=>9x^2+6x+1-12x^2+78x-126=0
=>-3x^2+84x-125=0
=>\(x\in\left\{26.42;1.58\right\}\)
b: =>(3x+1)[(2x-5)^2-(x-3)^2]=0
=>(3x+1)(2x-5-x+3)(2x-5+x-3)=0
=>(3x+1)(x-2)(3x-8)=0
=>\(x\in\left\{-\dfrac{1}{3};2;\dfrac{8}{3}\right\}\)
c; =>(x+5)(0,75x-3+1,25x)=0
=>(x+5)(2x-3)=0
=>x=3/2 hoặc x=-5
a.(x-1/2)^2=0
b.(x-2)^2=1
c.(2x-1)^3=-8
d.(x+1/2)^2=1/6
a) \(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
b) \(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
c) \(\Leftrightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Leftrightarrow2x-1=-3\Leftrightarrow x=-1\)
d) \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{\sqrt{6}}{6}\\x+\dfrac{1}{2}=-\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3+\sqrt{6}}{6}\\x=-\dfrac{3+\sqrt{6}}{6}\end{matrix}\right.\)
b: Ta có: \(\left(x-2\right)^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
c: Ta có: \(\left(2x-1\right)^3=-8\)
\(\Leftrightarrow2x-1=-2\)
\(\Leftrightarrow2x=-1\)
hay \(x=-\dfrac{1}{2}\)
a. \(\left(x-\dfrac{1}{2}\right)^2=0\)
<=> \(x-\dfrac{1}{2}=0\)
<=> \(x=\dfrac{1}{2}\)
b. (x - 2)2 = 1
<=> (x - 2)2 - 12 = 0
<=> (x - 2 - 1)(x - 2 + 1) = 0
<=> (x - 3)(x - 1) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
c. (2x - 1)3 = -8
<=> (2x - 1)3 + 23 = 0
<=> (2x - 1 + 2)\(\left[\left(2x-1\right)^2-2\left(2x-1\right)+2^2\right]=0\)
<=> (2x + 1)(4x2 - 4x + 1 - 4x + 2 + 4) = 0
<=> (2x + 1)(4x2 - 8x + 7) = 0
<=> \(\left[{}\begin{matrix}2x+1=0\\4x^2-8x+7=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\S=\varnothing\end{matrix}\right.\)
d. \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{6}\)
<=> \(\left(x+\dfrac{1}{2}\right)^2-\dfrac{1}{\left(\sqrt{6}\right)^2}=0\)
<=> \(\left(x+\dfrac{1}{2}-\dfrac{1}{\sqrt{6}}\right)\left(x+\dfrac{1}{2}+\dfrac{1}{\sqrt{6}}\right)=0\)
<=> \(\left(x+\dfrac{3-\sqrt{6}}{6}\right)\left(x+\dfrac{3+\sqrt{6}}{6}\right)=0\)
<=> \(\left[{}\begin{matrix}x+\dfrac{3-\sqrt{6}}{6}=0\\x+\dfrac{3+\sqrt{6}}{6}=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{-3+\sqrt{6}}{6}\\x=\dfrac{-3-\sqrt{6}}{6}\end{matrix}\right.\)