C/m :
\(a^2+b^2+1\ge2ab-2a+2b\)
\(VT=a+b+\frac{1}{a}+\frac{1}{b}=\left(a+\frac{1}{2a}\right)+\left(b+\frac{1}{2b}\right)+\frac{1}{2a}+\frac{1}{2b}\)
để ý \(1=a^2+b^2\ge2ab\Leftrightarrow ab\le\frac{1}{2}\)
\(\frac{1}{2a}+\frac{1}{2b}\ge2\sqrt{\frac{1}{4ab}}\ge2\sqrt{\frac{1}{2}}\)
\(a+\frac{1}{2a}\ge2\sqrt{\frac{1}{2}}\)
\(b+\frac{1}{2b}\ge2\sqrt{\frac{1}{2}}\)
+ 3 vế thì ta được \(VT\ge6\sqrt{\frac{1}{2}}\) dấu = khi \(\frac{1}{2a}=\frac{1}{2b}....a=\frac{1}{2a}....b=\frac{1}{2b}\)
đây mà gọi là toán lớp 1 hả trời ??????????????????????
bn lên mạng hoặc vào câu hỏi tương tự nha!
chúc bn hok tốt!
hahaha!
#conmeo#
Cho a,b,c khác 0 thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Tính \(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-c^2a^2}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
=> bc+ac+ab=0
ta có
\(bc+ac=-ab\)
<=> \(\left(bc+ac\right)^2=a^2b^2\)
<=> \(b^2c^2+a^2c^2+2abc^2=a^2b^2\)
<=> \(b^2c^2+a^2c^2-a^2b^2=-2abc^2\)
tương tự
\(a^2b^2+b^2c^2-c^2a^2=-2ab^2c\)
\(c^2a^2+a^2b^2-b^2c^2=-2a^2bc\)
thay vào E ta đc
\(E=\dfrac{-a^2b^2c^2}{2ab^2c}-\dfrac{a^2b^2c^2}{2abc^2}-\dfrac{a^2b^2c^2}{2a^2bc}\)
=\(-\dfrac{ac}{2}-\dfrac{ab}{2}-\dfrac{bc}{2}=\dfrac{-\left(ac+ab+bc\right)}{2}=0\) (vì ac+bc+ab=0 cmt)
c/m : 2(a/(b+2c)+b/(c+2a)+c/(a+2b)) - (b/(b+2a)+c/(c+2b)+a/(a+2c)) >= 1
Cho a, b, c \(\ne\)0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}=0\). Tính \(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-a^2c^2}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}.\)
Hình như sai đề :
Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=0\)
\(\Leftrightarrow\dfrac{ab+ac+bc}{abc}=0\)
\(\Leftrightarrow ab+ac+bc=0\) ( do \(a;b;c\ne0\) ) ( 1 )
Từ ( 1 ) \(\Rightarrow ab+bc=-ac\)
\(\Rightarrow\left(ab+bc\right)^2=\left[-\left(ac\right)\right]^2\)
\(\Rightarrow a^2b^2+b^2c^2+2ab^2c=a^2c^2\) ( * )
CMTT , ta được : \(\left\{{}\begin{matrix}b^2c^2+c^2a^2+2bc^2a=a^2b^2\\c^2a^2+a^2b^2+2a^2cb=b^2c^2\end{matrix}\right.\) ( *' )
Thay ( * ) và ( * ') vào E , ta được :
\(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-\left(a^2b^2+b^2c^2+2b^2ac\right)}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-\left(b^2c^2+c^2a^2+2bc^2a\right)}\)
\(+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-\left(c^2a^2+a^2b^2+2a^2cb\right)}\)
\(=\dfrac{a^2b^2c^2}{-2b^2ac}+\dfrac{a^2b^2c^2}{-2c^2ab}+\dfrac{a^2b^2c^2}{-2a^2cb}\)
\(=\dfrac{-ac}{2}+\dfrac{-ab}{2}+\dfrac{-bc}{2}\)
\(=\dfrac{-\left(ac+ab+bc\right)}{2}\)
\(=\dfrac{0}{2}=0\)
Vậy \(E=0\)
Với \(0< a\le b\le2,b+2a\ge2ab\)
Tìm max : \(M=a^4+b^4\)
Cho a,b,c là số dương thỏa mãn a+b+c=3. Chứng minh rằng: \(a^2b+b^2c+c^2a\ge\dfrac{9a^2b^2c^2}{1+2a^2b^2c^2}\)
Lời giải:
Ta có: \(a^2b+b^2c+c^2a\geq \frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)
\(\Leftrightarrow (a^2b+b^2c+c^2a)(1+2a^2b^2c^2)\geq 9a^2b^2c^2\)
\(\Leftrightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)(*)\)
--------------------------
Áp dụng BĐT AM-GM ta có:
\(a^2b+a^4b^3c^2+a^3b^2c^4\geq 3\sqrt[3]{a^9b^6c^6}=3a^3b^2c^2\)
\(b^2c+a^2b^4c^3+a^4b^3c^2\geq 3a^2b^3c^2\)
\(c^2a+a^3b^2c^4+a^2b^4c^3\geq 3a^2b^2c^3\)
Cộng theo vế:
\(\Rightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)\)
Vậy $(*)$ đúng
Do đó ta có đpcm
Dấu bằng xảy ra khi $a=b=c=1$
Cho a^2 + b^2 +c^2 = m
Tính A = (2a+2b-c)^2 + (2b+2c-a)^2 + (2c+2a-b^2) theo m
Cho a^2 +b ^2 +c ^2 =m .Tinh
A = ( 2a + 2b-c) ^ 2 + ( 2b+ 2c -a ) ^2 + (2c+2a-b) ^ 2
1. Phuc will look through a new English book tomorrow.
2. Which ethnic group has the largest population in Vietnam?
cho a^2+b^2+c^2 = m. Tính giá trị của biểu thức sau theo m: A= (2a + 2b -c)^2 + (2b + 2c -a)^2 + (2c + 2a -b)^2
A = (2a + 2b +2c - 3c)^2 + (2b + 2c +2a - 3a)^2 + (2c + 2a +2b -3b)^2
Đặt a + b + c = x thì
A = (2x - 3c)^2 + (2x - 3a)^2 + (2x - 3b)^2
=4x^2 - 12cx + 9c^2 + 4x^2 - 12ax + 9x^2 + 4x^2 - 12bx + 9b^2
=12x^2 - 12x(a + b + c) + 9(a^2 + b^2 + c^2)
=12x^2 - 12x^2 + 9(a^2 + b^2 + c^2) =9(a^2 + b^2 + c^2) =9m