Bài 5: Bảng căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hki Qqwwqe

Cho a,b,c là số dương thỏa mãn a+b+c=3. Chứng minh rằng: \(a^2b+b^2c+c^2a\ge\dfrac{9a^2b^2c^2}{1+2a^2b^2c^2}\)

Akai Haruma
26 tháng 7 2018 lúc 15:28

Lời giải:

Ta có: \(a^2b+b^2c+c^2a\geq \frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)

\(\Leftrightarrow (a^2b+b^2c+c^2a)(1+2a^2b^2c^2)\geq 9a^2b^2c^2\)

\(\Leftrightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)(*)\)

--------------------------

Áp dụng BĐT AM-GM ta có:

\(a^2b+a^4b^3c^2+a^3b^2c^4\geq 3\sqrt[3]{a^9b^6c^6}=3a^3b^2c^2\)

\(b^2c+a^2b^4c^3+a^4b^3c^2\geq 3a^2b^3c^2\)

\(c^2a+a^3b^2c^4+a^2b^4c^3\geq 3a^2b^2c^3\)

Cộng theo vế:

\(\Rightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)\)

Vậy $(*)$ đúng

Do đó ta có đpcm

Dấu bằng xảy ra khi $a=b=c=1$


Các câu hỏi tương tự
allsa1
Xem chi tiết
Khánh My
Xem chi tiết
TTTT
Xem chi tiết
Lê Thuỳ Lin
Xem chi tiết
Lê Thuỳ Lin
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Vi Lê Bình Phương
Xem chi tiết
phú quý
Xem chi tiết