2. Tìm x, y, z biết:
a) \(3.\left|2x-1\right|-7=2\)
b) \(3x=2y;7y=5z\) và \(x-y+z=34\)
c) \(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\) (x, y, z là các số nguyên dương và z là số nguyên tố)
Help me!!!!!!!!!!!
Bài 1: Rút gọn các biểu thức sau:
a) \(3x^2\) - 2x( 5+ 1,5x) +10
b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x)
c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\)
Bài 2: Tìm x, biết:
a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24
b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\)
c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)
d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\)
Bài 3: Tính giá trị của các biểu thức sau:
a)\(A=x^2\left(x+y\right)-y\left(x^2+y^2\right)+2002\) Với \(x=1;y=-1\)
b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)-\dfrac{11}{20}\) Với \(x=-0,6;y=-0,75\)
Bài 4: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị biến:
a) \(2\left(2x+x^2\right)-x^2\left(x+2\right)+\left(x^3-4x+3\right)\)
b) \(z\left(y-x\right)+y\left(z-x\right)+x\left(y+z\right)-2yz+100\)
c) \(2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)
Bài 5: Tính giá trị của biểu thức:
a) \(A=\left(x-3\right)\left(x-7\right)-\left(2x-5\right)\left(x-1\right)\) Với \(x=0;x=1;x=-1\)
b) \(B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\) Với \(\left|x\right|=2\)
c) \(C=\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\) Với \(x=1;y=1;z=\left|1\right|\)
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
Bài 2:
c) \(2x(5-3x)+2x(3x-5)-3(x-7)=3\)
\(\Leftrightarrow 2x(5-3x)-2x(5-3x)-3(x-7)=3\)
\(\Leftrightarrow -3(x-7)=3\)
\(\Leftrightarrow x-7=-1\Rightarrow x=6\)
d)
\(3x(x+1)-2x(x+2)=-1-x\)
\(\Leftrightarrow 3x^2+3x-(2x^2+4x)+x+1=0\)
\(\Leftrightarrow x^2+1=0\)
Vô lý vì \(x^2+1\geq 0+1=1>0\) với mọi $x$
Vậy không tồn tại $x$ thỏa mãn.
bài 1: Phân tích đa thức thành nhân tử
a)\(3x^3+6x^2\)
b)\(x^2-y^2-2x+2y\)
bài 2:
a) tìm x:\(\left(2x-1\right)^2-25=0\)
b) Tìm đa thức Q biết: \(Q.\left(x^2+3x+1\right)=x^3+2x^2-2x-1\)
Gisup mik vs
Cảm ơn
Bài `1:`
`a)3x^3+6x^2=3x^2(x+2)`
`b)x^2-y^2-2x+2y=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)`
Bài `2:`
`a)(2x-1)^2-25=0`
`<=>(2x-1-5)(2x-1+5)=0`
`<=>(2x-6)(2x+4)=0`
`<=>[(x=3),(x=-2):}`
`b)Q.(x^2+3x+1)=x^3+2x^2-2x-1`
`<=>Q=[x^3+2x^2-2x-1]/[x^2+3x+1]`
`<=>Q=[x^3-x^2+3x^2-3x+x-1]/[x^2+3x+1]`
`<=>Q=[(x-1)(x^2+3x+1)]/[x^2+3x+1]=x-1`
Bài 1 .phân tích các đa thức sau :
a.\(z^2-\left(x-1\right)^2+2\left(x-1\right)\)
b.\(xz-yz-x^2+2xy-y^2\)
c.\(a^2x+aby-2abx-2b^2y\)
d.\(ab\left(x^2+y^2\right)+xy\left(a^2+b^2\right)\)
e.\(x^2+2xy+y^2-2x-2y+1\)
g.\(3x-3y+x^2-2xy+y^2\)
h.\(x^3-y^3-3x+3y\)
i.\(x^2-2xy+y^2-z^2\)
Bài 2: Tìm x, biết
a.\(x\left(2x-7\right)-4x+14=0\)
b.\(2x^3+3x^2+2x+3=0\)
Bài 1 :
\(e,x^2+2xy+y^2-2x-2y+1\)
\(=\left(x+y-1\right)^2\)
Bài 2:
\(b,2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)
\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\left(x^2+1>0\right)\)
\(\Leftrightarrow x=-\dfrac{3}{2}\)
a)tìm x biết : \(3x-|2x+1|=2\)
b)Tìm x,y,z biết : \(3\left(x-1\right)=2\left(y-2\right);4\left(y-2\right)=3\left(z-3\right)\) và \(2x+3y-z=50\)
cảm ơn các bạn rất nhiều
bài 1: tìm đa thức M biết
a, \(M+x^2\)\(-3xy-y^2\)=\(2x^2\) \(-y^2+xy\)
b,\(x^2y^2-2x^2y^3+2x^2-y^3-P=x^2y^3-3x^2y^2-x^2\)
bài 2: tìm nghiệm của các đa thức sau
a, \(5\left(x-2\right)-2\left(x+3\right)\)
b, \(5x^2-125\)
c,\(2x^2-x-3\)
giúp mik vs ạ
2:
a: A(x)=0
=>5x-10-2x-6=0
=>3x-16=0
=>x=16/3
b: B(x)=0
=>5x^2-125=0
=>x^2-25=0
=>x=5 hoặc x=-5
c: C(x)=0
=>2x^2-x-3=0
=>2x^2-3x+2x-3=0
=>(2x-3)(x+1)=0
=>x=3/2 hoặc x=-1
tìm x,y,z biết :
a) 3x-1/5 = 2x-1/7 = 2y+5/x+1
b) 3x-4/6 = y-1/2 = 3x-y-3/2y
c) x/2 = y/3 = z/4 và 2x^2 + y^2 - 3z^2 =-124
cần giải gấp ai xong trước mình tick cho
1.Cho x+y+z=0. CMR:
a) \(5\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)=6\left(x^5+y^5+z^5\right)\)
b) \(x^7+y^7+z^7=7xyz\left(x^2y^2+y^2z^2+z^2x^2\right)\)
c) \(10\left(x^7+y^7+z^7\right)=7\left(x^2+y^2+z^2\right)\left(x^5+y^5+z^5\right)\)
d) \(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
2. Tìm n∈ N để biểu thức sau là số nguyên tố
a) \(A=n^3-4n^2-4n-1\)
b) \(B=n^3-6n^2+9n-2\)
c) \(C=n^{1975}+n^{1973}+1\)
Vì bài dài nên mình sẽ tách ra nhé.
1a. Ta có:
$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=-2(xy+yz+xz)$
$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=-3(x+y)(y+z)(x+z)$
$=-3(-z)(-x)(-y)=3xyz$
$\Rightarrow \text{VT}=-30xyz(xy+yz+xz)(1)$
------------------------
$x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)$
$=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2(x+y)$
$=(z^2-2xy)(-z^3+3xyz)+x^2y^2z$
$=-z^5+3xyz^3+2xyz^3-6x^2y^2z+x^2y^2z$
$=-z^5+5xyz^3-5x^2y^2z$
$\Rightarrow 6(x^5+y^5+z^5)=6(5xyz^3-5x^2y^2z)$
$=30xyz(z^2-xy)=30xyz[z(-x-y)-xy]=-30xyz(xy+yz+xz)(2)$
Từ $(1);(2)$ ta có đpcm.
1b.
$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$
$=(z^2-2xy)^2-2x^2y^2=z^4+2x^2y^2-4xyz^2$
$x^3+y^3=(x+y)^3-3xy(x+y)=-z^3+3xyz$
Do đó:
$x^7+y^7=(x^4+y^4)(x^3+y^3)-x^3y^3(x+y)$
$=(z^4+2x^2y^2-4xyz^2)(-z^3+3xyz)+x^3y^3z$
$=7x^3y^3z-14x^2y^2z^3+7xyz^5-z^7$
$\Rightarrow \text{VT}=7x^3y^3z-14x^2y^2z^3+7xyz^5$
$=7xyz(x^2y^2-2xyz^2+z^4)$
$=7xyz(xy-z^2)$
$=7xyz[xy+z(x+y)]^2=7xyz(xy+yz+xz)^2$
$=7xyz[x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)]$
$=7xyz(x^2y^2+y^2z^2+z^2x^2)$ (đpcm)
1c. Sử dụng kq phần a,b:
\(10(x^7+y^7+z^7)=70xyz(xy+yz+xz)^2\)
\(=-35xyz(xy+yz+xz).-2(xy+yz+xz)=-35xyz(x+y+z)(x^2+y^2+z^2)\)
\(=\frac{7}{6}.-30xyz(xy+yz+xz)(x^2+y^2+z^2)=\frac{7}{6}.6(x^5+y^5+z^5).(x^2+y^2+z^2)\)
\(=7(x^5+y^5+z^5)(x^2+y^2+z^5)\)
(đpcm)
1d. Áp dụng kq phần a
$6(x^5+y^5+z^5)=-30xyz(xy+y+xz)=15xyz.-2(xy+yz+xz)=15xyz(x^2+y^2+z^2)$
$\Rightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)$ (đpcm)
1. Tìm a,b ∈ Z+(a,b ≠1) để 2a+3b là số chính phương
2. Tìm nghiệm nguyên không âm của phương trình:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\)
3. Tìm x,y,z ∈ Z+ t/m:
\(xy+y-x!=1;yz+z-y!=1;x^2-2y^2+2x-4y=2\)
4. Tìm tất cả các số nguyên tố p;q;r sao cho:
pq+qp=r
5. Tìm nghiệm nguyên tố của phương trình:
\(x^y+y^x+2022=z\)
6. CMR: Với n ∈ N và n>2 thì 2n-1 và 2n+1 không thể đồng thời là 2 số chính phương
Bài 2: Ta có:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ
\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).
Thay vào tìm được y...
Lúc nãy bận thi online nên giờ mới làm tiếp được, bạn thông cảm.
Bài 4:
Do p; q; r là các SNT nên \(p^q+q^p>2^2+2^2=8\Rightarrow r>8\) nên r là SNT lẻ
Mà r lẻ thì trong 2 số \(p^q;q^p\) phải có 1 số lẻ, một số chẵn.
Do vai trò p; q như nhau nên không mất tính tổng quát ta giả sử p lẻ, q chẵn
\(\Rightarrow q=2\). Lúc này ta có:
\(p^2+2^p=r\)
+Xét p=3\(\Rightarrow p^2+2^p=r=17\left(tm\right)\) (Do p lẻ nên loại TH p=2)
+Xét p>3. Ta có:
\(\left\{{}\begin{matrix}p^2\equiv1\left(mod3\right)\\2^p\equiv\left(-1\right)^p\equiv-1\left(mod3\right)\end{matrix}\right.\)
\(\Rightarrow p^2+2^p\equiv1+\left(-1\right)\equiv0\left(mod3\right)\)
\(\Rightarrow\left(p^2+2^p\right)⋮3\) mà \(p^2+2^p>3\) nên là hợp số
\(\Rightarrow r\) là hợp số, không phải SNT, loại.
Vậy ta có \(\left(p;q;r\right)\in\left\{\left(3;2;17\right);\left(2;3;17\right)\right\}\) tm đề bài
Bài 6: Ta có 1SCP lẻ chia cho 4 dư 1.
Nếu 2n-1 là SCP thì ta có
\(2n-1\equiv1\left(mod4\right)\Leftrightarrow2n+1\equiv3\left(mod4\right)\)
Do đó 2n+1 không là SCP
\(\Rightarrowđpcm\)
Bài 1 : Tìm x,y,z biết :
a) 2x = 3y ; 5y = 7z và 3x - 7y + 5z = -30
b) 3x =5y ; 7y = 2z và x + y + z = 74
c) x : z = \(\dfrac{2}{3}\) : \(\dfrac{1}{2}\) ; z : y = 1 : \(\dfrac{4}{7}\) và y + z = 66
d) x : y : z = 3 : 4 : 5 và \(2x^2\) + \(2y^2\) - \(3z^2\) = -100
e) \(x:y:z\) = 2 : 5 : 6 và \(2x^2\) + \(4y^2\) - \(4z^2\) = -324
f) \(\dfrac{x-1}{2}\) = \(\dfrac{y-2}{3}\) = \(\dfrac{z-3}{4}\) và \(x-2y+3z=14\)
g)\(\dfrac{x-1}{2}\) = \(\dfrac{y+3}{4}\) =\(\dfrac{z-5}{6}\) và \(5z-3x-4y=50\)
h) \(\dfrac{x}{2}=\dfrac{y}{7}\) và \(xy=56\)
i)\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{xy}{200}\)
k) \(\dfrac{x-5}{6}=\dfrac{x+5}{18}\)
l) \(\dfrac{2x-11}{12}=\dfrac{x+5}{20}\)
\(\hept{\begin{cases}3x^2+2y+1=2z\left(x+2\right)\\3y^2+2z+1=2x\left(y+2\right)\\3z^2+2x+1=2y\left(z+2\right)\end{cases}\Leftrightarrow\hept{\begin{cases}3x^2+2y+1=2xz+4z\\3y^2+2z+1=2xy+4x\\3z^2+2x+1=2yz+4y\end{cases}}}\)
Cộng 3 vế vào rồi chuyển vế ta được
\(2x^2+2y^2+2z^2-2xy-2yz-2zx+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2 +\left(z-x\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)
Dễ thấy VP > 0
Dấu "=" khi x = y = z = -1