cho \(cosa=\frac{3}{4}\). tính \(cos\frac{3a}{2}.cos\frac{a}{2}\)
Chứng minh:
\(a,\frac{cosa}{1+sina}+tana=\frac{1}{cosa}\)
\(b,\frac{1+2sina.cosa}{sin^2a-cos^2a}=\frac{tana+1}{tana-1}\)
c,\(sin^6a+cos^6a=1-3sin^2a.cos^2a\)
d,\(sin^2a-tan^2a=tan^6a\left(cos^2a-cot^2a\right)\)
e.\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a+cot^3a\)
\(\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina\left(1+sina\right)}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)
\(\frac{sin^2a+cos^2a+2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina+cosa}{sina-cosa}=\frac{\frac{sina}{cosa}+1}{\frac{sina}{cosa}-1}=\frac{tana+1}{tana-1}\)
\(\left(sin^2a\right)^3+\left(cos^2a\right)^3=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)
\(=1-3sin^2a.cos^2a\)
\(sin^2a-tan^2a=tan^4a\left(\frac{sin^2a}{tan^4a}-\frac{1}{tan^2a}\right)=tan^4a\left(sin^2a.\frac{cos^2a}{sin^2a}-\frac{1}{tan^2a}\right)\)
\(=tan^4a\left(cos^2a-cot^2a\right)\) bạn ghi sai đề câu này
\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a\left(1+cot^2a\right)-\frac{1}{sina.cosa}+cot^3a\left(1+tan^2a\right)\)
\(=tan^3a+tana-\frac{1}{sina.cosa}+cot^3a+cota\)
\(=tan^3a+cot^3a+\frac{sina}{cosa}+\frac{cosa}{sina}-\frac{1}{sina.cosa}\)
\(=tan^3a+cot^3a+\frac{sin^2a+cos^2a-1}{sina.cosa}=tan^3a+cot^3a\)
chứng minh các đẳng thức sau :
a)\(\frac{cos\left(a-b\right)}{cos\left(a+b\right)}=\frac{cota.cotb+1}{cota.cotb-1}\)
b)\(2\left(sin^6a+cos^6a\right)+1=3\left(sin^4a+cos^4a\right)\)
c)\(\frac{tana-tanb}{cotb-cota}=tanatanb\)
d)\(\left(cotx+tanx\right)^2-\left(cotx-tanx\right)^2=4\)
e)\(\frac{sin^3a+cos^3a}{sina+cosa}=1-sinacosa\)
Lời giải:
a)
\(\frac{\cos (a-b)}{\cos (a+b)}=\frac{\cos a\cos b+\sin a\sin b}{\cos a\cos b-\sin a\sin b}=\frac{\frac{\cos a\cos b}{\sin a\sin b}+1}{\frac{\cos a\cos b}{\sin a\sin b}-1}=\frac{\cot a\cot b+1}{\cot a\cot b-1}\)
b)
\(2(\sin ^6a+\cos ^6a)+1=2(\sin ^2a+\cos ^2a)(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)+1\)
\(=2(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)+1\)
\(=3(\sin ^4a+\cos ^4a)-(\sin ^4a+\cos ^4a+2\sin ^2a\cos ^2a)+1\)
\(=3(\sin ^4a+\cos ^4a)-(\sin ^2a+\cos ^2a)^2+1\)
\(=3(\sin ^4a+\cos ^4a)-1^2+1=3(\sin ^4a+\cos ^4a)\)
c)
\(\frac{\tan a-\tan b}{cot b-\cot a}=\frac{\tan a-\tan b}{\frac{1}{\tan b}-\frac{1}{\tan a}}\) (nhớ rằng \(\tan x.\cot x=1\rightarrow \cot x=\frac{1}{\tan x}\) )
\(=\frac{\tan a-\tan b}{\frac{\tan a-\tan b}{\tan a\tan b}}=\tan a\tan b\)
d)
\((\cot x+\tan x)^2-(\cot x-\tan x)^2=(\cot ^2x+\tan ^2x+2\cot x\tan x)-(\cot ^2x-2\cot x\tan x+\tan ^2x)\)
\(=4\cot x\tan x=4.1=4\)
e)
\(\frac{\sin ^3a+\cos ^3a}{\sin a+\cos a}=\frac{(\sin a+\cos a)(\sin ^2a-\sin a\cos a+\cos ^2a)}{\sin a+\cos a}\)
\(=\sin ^2a-\sin a\cos a+\cos ^2a=(\sin ^2a+\cos ^2a)-\sin a\cos a=1-\sin a\cos a\)
Vậy ta có đpcm.
Chứng minh các đẳng thức lượng giác sau:
a, \(\frac{sin2a-2sina}{sin2a+2sina}=-tan^2\frac{a}{2}\)
b, \(\frac{sin^4x+cos^2x-sin^2x}{cos^4x+sin^2x-cos^2x}=cot^4x\)
c, \(\frac{sin^3a-cos^3a}{sina-cosa}=1+\frac{sin2a}{2}\)
giúp mình với ạ:((
\(\frac{sin2a-2sina}{sin2a+2sina}=\frac{2sina.cosa-2sina}{2sina.cosa+2sina}=\frac{2sina\left(cosa-1\right)}{2sina\left(cosa+1\right)}=\frac{cosa-1}{cosa+1}\)
\(=\frac{1-2sin^2\frac{a}{2}-1}{2cos^2\frac{a}{2}-1+1}=\frac{-sin^2\frac{a}{2}}{cos^2\frac{a}{2}}=-tan^2\frac{a}{2}\)
\(\frac{sin^4x-sin^2x+cos^2x}{cos^4x-cos^2x+sin^2x}=\frac{sin^2x\left(sin^2x-1\right)+cos^2x}{cos^2x\left(cos^2x-1\right)+sin^2x}=\frac{-sin^2x.cos^2x+cos^2x}{-cos^2x.sin^2x+sin^2x}\)
\(=\frac{cos^2x\left(1-sin^2x\right)}{sin^2x\left(1-cos^2x\right)}=\frac{cos^4x}{sin^4x}=cot^4x\)
\(\frac{sin^3a-cos^3a}{sina-cosa}=\frac{\left(sina-cosa\right)\left[sin^2a+cos^2a+sina.cosa\right]}{sina-cosa}=1+sina.cosa=1+\frac{1}{2}sin2a\)
1)CHO cos a=1/3. tính P=3sin2a+cosaa
2)cho cot a=1/3 Q= \(\frac{cosa-sina}{cosa+sina}\)
rút gọn A=\(\frac{sin^3a-cos^3a}{sina-cosa}+sina+cosa\)
\(A=\frac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)}{sina-cosa}+sina+cosa\)
\(=1+sina.cosa+sina+cosa\)
\(=\left(sina+1\right)\left(cosa+1\right)\)
cho bít \(\tan a=\frac{2}{3}.\)Tính \(M=\frac{\sin^3a+3\cos^3a}{27\sin^3a-25\cos^3a}\)
cho cosa =3/4.Tinh A= cos(3a/2)cos(a/2)
cos(\(\dfrac{3a}{2}\))*cos(\(\dfrac{a}{2}\))=\(\dfrac{1}{2}\left(cos\left(\dfrac{3a}{2}+\dfrac{a}{2}\right)+cos\left(\dfrac{3a}{2}-\dfrac{a}{2}\right)\right)\)=\(\dfrac{1}{2}\left(cos\left(2a\right)+cos\left(a\right)\right)\)=\(\dfrac{1}{2}\left(2cos^2a-1+cosa\right)\)=\(\dfrac{1}{2}\left(2\cdot\left(\dfrac{3}{4}\right)^2-1+\dfrac{3}{4}\right)=\dfrac{7}{16}\)
chứng minh các đẳng thức sau:
1. sin6a.cos6a+sin2a.cos2a=\(\frac{1}{8}\)(1+cos42a)
2.\(\frac{tana-sina}{sin^3a}\) = \(\frac{1}{cos\left(1+cosa\right)}\)
Rút gọn:
P= \(\frac{sin^3a-cos^3a}{sina-cosa}\)
Q= \(\frac{sin^3x+cos^3x}{sinx+cosx}\)