Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tú Nguyên Phan
Xem chi tiết
Kayoko
15 tháng 12 2016 lúc 17:10

đăng từng câu thui chứ!!!!!ucche

tuấn anh
Xem chi tiết
Hoàng Việt Bách
6 tháng 4 2022 lúc 19:44

giả sử tam giác ABC có 2 đường trung tuyến BM và CN gặp nhau ở G

=> G là trong tâm của tam giác

-> GB=BM ; GC = CN

mà BM=CN (gt) nên GB = GC

=> tam giác GBC cân tại G

Do đó tam giác BCN=tam giác CBM vì:

BC là cạnh chung

CN = BM (gt)

=> tam giác ABC cân tại A

Long Gai Thiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 7 2023 lúc 0:05

Gọi tam giác đề bài cho là ΔABC có BD,CE là các trung tuyến, BD=CE. Cần chứng minh ΔABC cân tại A

Gọi G là giao điểm của BD và CE

Xét ΔABC có

BD,CE là trung tuyến

BD cắt CE tại G

=>G là trọng tâm

=>GB=2/3BD và GC=2/3CE

mà BD=CE

nên GB=GC

=>góc GBC=góc GCB

Xét ΔDBC và ΔECB có

BC chung

góc DBC=góc ECB

DB=EC

=>ΔDBC=ΔECB

=>góc DCB=góc EBC

=>ΔABC cân tại A

Nguyễn Hoàng Minh Khôi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 12 2018 lúc 4:44

Giả sử ΔABC có hai đường trung tuyến BD và CE bằng nhau.

Gọi I là giao điểm BD và CE, ta có:

BI = 2/3 BD (tính chất đường trung tuyến) (1)

CI = 2/3 CE (tính chất đường trung tuyến) (2)

Từ (1), (2) và giả thiết BD = CE suy ra: BI = CI

Do BD = CE suy ra: BI + ID = CI + IE

Mà BI = CI ( chứng minh trên) nên : ID = IE

Xét ΔBIE và ΔCID, ta có:

BI = CI (chứng minh trên)

∠(BIE) = ∠(CID) (đối đỉnh)

IE = ID (chứng minh trên)

Suy ra: ΔBIE = ΔCID (c.g.c)

Suy ra: BE = CD (hai cạnh tương ứng) (3)

Lại có: BE = 1/2 AB (vì E là trung điểm AB) (4)

CD = 1/2 AC (vì D trung điểm AC) (5)

Từ (3), (4) và (5) suy ra: AB = AC.

Vậy tam giác ABC cân tại A.

Trang anh
Xem chi tiết
Chloe Lynne
21 tháng 6 2021 lúc 16:03
ĐĐSĐĐĐĐSSĐĐSĐSĐĐSĐĐS
Khách vãng lai đã xóa
Nguyễn Đỗ Bảo Linh
21 tháng 6 2021 lúc 16:09

1.Đ

2.Đ

3.S

4.Đ

5.Đ

6.S

7.Đ

8.S

9.Đ

10.Đ

11.Đ

12.S

13.S

14.S

15.S

16.Đ

17.S

18.Đ

19.Đ

20.Đ

Khách vãng lai đã xóa
lam123
10 tháng 10 lúc 21:58
Đ Đ S Đ Đ Đ Đ S S Đ Đ S Đ S Đ Đ S Đ Đ S
CHU ANH TUẤN
Xem chi tiết
Hoàng Thế Hải
11 tháng 10 2018 lúc 22:24

A F E B H C

Xét hai tam giác vuông EBC và FCB có:

BC (cạnh huyền chung)

BE = CF

Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)

=> Góc FBC = góc ECB

hay  ∆ABC cân tại A

Sách Giáo Khoa
Xem chi tiết
Thien Tu Borum
19 tháng 4 2017 lúc 16:11

Hướng dẫn:

Xét hai tam giác vuông EBC và FCB có:

BC (cạnh huyền chung)

BE = CF (giả thiết)

Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)

=> \(\widehat{FBC}=\widehat{ECB}\)

hay ∆ABC cân tại A

+ Nếu tam giác có ba đường cao bằng nhau, tương tự như chứng minh trên, ta chứng minh được ba góc của chúng bằng nhau, suy ra đó là tam giác đều.

 

Nguyễn Thị Thảo
19 tháng 4 2017 lúc 20:40

Xét hai tam giác vuông EBC và FCB có:

BC (cạnh huyền chung)

BE = CF

Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)

=> ˆFBC=ˆECBFBC^=ECB^

hay ∆ABC cân tại A

+ Nếu tam giác có ba đường cao bằng nhau, tương tự như chứng minh trên, ta chứng minh được đó là tam giác đều.



Nga Thu
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2022 lúc 9:02

Xét ΔABC có \(\widehat{B}=\widehat{C}\)

mà cạnh đối diện của góc B là cạnh AC

và cạnh đối diện của góc C là cạnh AB

nên AB=AC

Sách Giáo Khoa
Xem chi tiết
Thien Tu Borum
11 tháng 5 2017 lúc 20:50

Gọi Δ ABC có trung tuyến BM = CN, G là trọng tâm Δ (giao điểm các trung tuyến)
Ta có :
GB = 2/3.BM
GC = 2/3.CN
Mà BM = CN => GB = GC
=> Δ BGC cân tại G
=> ∠ MBC = ∠ NCB
Xét Δ BMC và Δ CNB :
BM = CN
∠ MBC = ∠ NCB
BC là cạnh chung
=> Δ BMC = Δ CNB (c - g - c)
=> ∠ MCB = ∠ NBC
hay ∠ ACB = ∠ ABC
=> Δ ABC cân tại A (đpcm)