Bài 9: Tính chất ba đường cao của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Chứng minh rằng một tam giác có hai đường cao (xuất phát từ các đỉnh của hai góc nhọn) bằng nhau thì tam giác đó là tam giác cân. Từ đó suy ra một tam giác có ba đường cao bằng nhau thì tam giác đó là tam giác đều.

Thien Tu Borum
19 tháng 4 2017 lúc 16:11

Hướng dẫn:

Xét hai tam giác vuông EBC và FCB có:

BC (cạnh huyền chung)

BE = CF (giả thiết)

Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)

=> \(\widehat{FBC}=\widehat{ECB}\)

hay ∆ABC cân tại A

+ Nếu tam giác có ba đường cao bằng nhau, tương tự như chứng minh trên, ta chứng minh được ba góc của chúng bằng nhau, suy ra đó là tam giác đều.

 

Nguyễn Thị Thảo
19 tháng 4 2017 lúc 20:40

Xét hai tam giác vuông EBC và FCB có:

BC (cạnh huyền chung)

BE = CF

Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)

=> ˆFBC=ˆECBFBC^=ECB^

hay ∆ABC cân tại A

+ Nếu tam giác có ba đường cao bằng nhau, tương tự như chứng minh trên, ta chứng minh được đó là tam giác đều.




Các câu hỏi tương tự
Nguyễn Kaly
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Tt_Cindy_tT
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Long Gai Thiên
Xem chi tiết
Ngọc Hà Nguyễn
Xem chi tiết
Thu Phương
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết