Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hằng hồ thị hằng
Xem chi tiết
Akai Haruma
29 tháng 5 2021 lúc 23:01

Bài 1:

Vì $a\geq 1$ nên:

\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)

\(\geq 1+\sqrt{4}+0=3\)

Ta có đpcm

Dấu "=" xảy ra khi $a=1$

 

Akai Haruma
29 tháng 5 2021 lúc 23:04

Bài 2:
ĐKXĐ: x\geq -3$

Xét hàm:

\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)

\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)

Do đó $f(x)$ đồng biến trên TXĐ

\(\Rightarrow f(x)=0\) có nghiệm duy nhất

Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.

Lê Hồng Anh
Xem chi tiết
Akai Haruma
24 tháng 8 2020 lúc 18:14

Lời giải:

Áp dụng công thức: $\cos 2x=\cos ^2x-\sin ^2x=1-2\sin ^2x=2\cos ^2x-1$ ta có:

\(\frac{6+2\cos 4a}{1-\cos 4a}=\frac{6+2(2\cos ^22a-1)}{2\sin ^22a}=\frac{2+2\cos ^22a}{\sin ^22a}=\frac{2+2(\cos ^2a-\sin ^2a)^2}{4\sin ^2a\cos ^2a}\)

\(=\frac{1+(\sin ^2a-\cos ^2a)^2}{2\sin ^2a\cos ^2a}=\frac{(\sin ^2a+\cos ^2a)^2+(\sin ^2a-\cos ^2a)^2}{2\sin ^2a\cos ^2a}=\frac{2(\sin ^4a+\cos ^4a)}{2\sin ^2a\cos ^2a}=\frac{\sin ^4a+\cos ^4a}{\sin ^2a\cos ^2a}\)

\(=\frac{\sin ^2a}{\cos ^2a}+\frac{\cos ^2a}{\sin ^2a}=\tan ^2a+\cot ^2a\) (đpcm)

Sue Tô
Xem chi tiết
Nhật Lệ
Xem chi tiết
Snow White
1 tháng 6 2017 lúc 13:17

Sao khó vậy???mk mới lớp 6 thôi!!!

trần trang
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hai Binh
27 tháng 4 2017 lúc 17:19

Hỏi đáp Toán

nguyen la nguyen
Xem chi tiết
Đào Nhật Hà
20 tháng 9 2017 lúc 23:32
Câu a dùng sin^2a+cos^2a=1 và a^2-b^2=(a-b)(a+b). Kết quả=sin^2 Câu b tương tự=2 Câu c tách sina ra ngoài và được sin^3a Câu d dùng hđt a^2+2ab+b^2=(a+b)^2 và kết quả là 1 Câu e tách tan^2a ra ngoài và được tan^2*cos^2 mà tana=sina/cosa. Kết quả bằng sin^2a Câu f có tan^2*cos^2=sin^2a nên kết quả câu f=1 Chú thích chút ^ là mũ, a là alpha,* là nhân
Hoàng Kiều Quỳnh Anh
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 4 2022 lúc 1:17

\(x^2-x+1-m=0\left(1\right)\\ \text{PT có 2 nghiệm }x_1,x_2\\ \Leftrightarrow\Delta=1-4\left(1-m\right)\ge0\\ \Leftrightarrow4m-3\ge0\Leftrightarrow m\ge\dfrac{3}{4}\\ \text{Vi-ét: }\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=1-m\end{matrix}\right.\\ \text{Ta có }5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\\ \Leftrightarrow5\cdot\dfrac{x_1+x_2}{x_1x_2}-x_1x_2+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m-1+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m+3=0\\ \Leftrightarrow5+\left(1-m\right)\left(m+3\right)=0\\ \Leftrightarrow m^2+2m-8=0\\ \Leftrightarrow m^2-2m+4m-8=0\\ \Leftrightarrow\left(m-2\right)\left(m+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(n\right)\\m=-4\left(l\right)\end{matrix}\right.\)

Vậy $m=2$

Tanh Tanh Channel
Xem chi tiết