Cho a,b,c thỏa mãn: ab+a+b=8. Tìm GTNN của biểu thức M=a^2+b^2
Cho 2 số dương a và b thỏa mãn: \(a+b\le4\). Tìm GTNN của biểu thức: \(M=\dfrac{1}{a^2+b^2}+ab+\dfrac{25}{ab}\)
Cho hai số dương a và b thỏa mãn: \(a+b\le4\). Tìm GTNN của biểu thức: \(M=\dfrac{1}{a^2+b^2}+ab+\dfrac{25}{ab}\)
\(A=\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+\left(ab+\dfrac{16}{ab}\right)+\dfrac{17}{2ab}\)
\(A\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{16ab}{ab}}+\dfrac{17}{\dfrac{2\left(a+b\right)^2}{4}}\)
\(A\ge\dfrac{4}{\left(a+b\right)^2}+8+\dfrac{34}{\left(a+b\right)^2}\ge\dfrac{4}{4^2}+8+\dfrac{34}{4^2}=\dfrac{83}{8}\)
Dấu "=" xảy ra khi \(a=b=2\)
Cho a, b, c là các số thực dương thay đổi thỏa mãn điều kiện: a+b+c=1.
Tìm GTNN của biểu thức:
M=14(\(a^2\)+\(b^2\)+\(c^2\))+\(\dfrac{ab+ac+bc}{a^2b+b^2c+c^2a}\)
Theo đề ra, ta có:
\(a^2+b^2+c^2\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)
Theo BĐT Cô-si:
\(\left\{{}\begin{matrix}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)
Do vậy \(M\ge14\left(a^2+b^2+c^2\right)+\dfrac{3\left(ab+bc+ac\right)}{a^2+b^2+c^2}\)
Ta đặt \(a^2+b^2+c^2=k\)
Luôn có \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)
Vì thế nên \(k\ge\dfrac{1}{3}\)
Khi đấy:
\(M\ge14k+\dfrac{3\left(1-k\right)}{2k}=\dfrac{k}{2}+\dfrac{27k}{2}+\dfrac{3}{2k}-\dfrac{3}{2}\ge\dfrac{1}{3}.\dfrac{1}{2}+2\sqrt{\dfrac{27k}{2}.\dfrac{3}{2k}}-\dfrac{3}{2}=\dfrac{23}{3}\)
\(\Rightarrow Min_M=\dfrac{23}{3}\Leftrightarrow a=b=c=\dfrac{1}{3}\).
Cho a,b là 2 số dương thỏa mãn \(a\ge2b\). Tìm GTNN của biểu thức \(A=\dfrac{a^2+b^2}{ab}\)
\(a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)
\(A=\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{a}{4b}+\dfrac{b}{a}+\dfrac{3}{4}.\dfrac{a}{b}\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)
\(A_{min}=\dfrac{5}{2}\) khi \(a=2b\)
cho a b là các số thụce thỏa mãn \(2a^2\)+\(\dfrac{1}{\text{a}^2}\)+\(\dfrac{\text{b^2}}{\text{4}}\)
tìm gtnn của biểu thức M=ab
Cho a,b,c dương thỏa mãn điều kiện a+b+c=2. Tìm GTNN của biểu thức:
\(Q=\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\)
Biểu thức này chỉ có max, ko có min
Cho phép mình giải max bài này ạ:
Ta có:
\(\sqrt{2a+bc}=\sqrt{\left(a+b+c\right)a+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\overset{cosi}{\le}\dfrac{a+b+a+c}{2}\)
Tương tự: \(\sqrt{2b+ac}\le\dfrac{b+c+b+a}{2};\sqrt{2c+ab}\le\dfrac{c+a+c+b}{2}\)
\(\Rightarrow Q\le\dfrac{4\left(a+b+c\right)}{2}=2\left(a+b+c\right)=4\)
Dấu = xảy ra \(\Leftrightarrow a=b=c=\dfrac{2}{3}\)
Cho các số thực dương a, b, c thỏa mãn \(a^2+b^2+c^2+abc=4\). Tìm GTNN của biểu thức \(P=\dfrac{ab}{a+2b}+\dfrac{bc}{b+2c}+\dfrac{ca}{c+2a}\)
Hi vọng là tìm GTLN:
Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).
Áp dụng bất đẳng thức AM - GM ta có:
\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)
\(\Rightarrow a+b+c\le3\).
Áp dụng bất đẳng thức Schwarz ta có:
\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).
Đẳng thức xảy ra khi a = b = c = 1.
Ta có: P= \(2a+3b+\dfrac{1}{a}+\dfrac{4}{b}\) = \(\text{}\text{}(\dfrac{1}{a}+a)+\left(\dfrac{4}{b}+b\right)+\left(a+2b\right)\)
Ta thấy: \(\text{}\text{}(\dfrac{1}{a}+a)\ge2\sqrt{\dfrac{1}{a}\cdot a}=2\)
\(\text{}\text{}\left(\dfrac{4}{b}+b\right)\ge2\sqrt{\dfrac{4}{b}\cdot b}=4\)
Do đó: P \(\ge2+4+5=11\)
Vậy: P(min)=11 khi: \(\left\{{}\begin{matrix}\dfrac{1}{a}=a\\\dfrac{4}{b}=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right..\)
cho 3 số a,b,c thỏa mãn a+b+c=2 .Tìm GTNN của biểu thức A=a^2+b^2+c^2
Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :
\(A=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{2^2}{3}=\frac{4}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{2}{3}\)
Vậy .............
Ta dễ có BĐT sau \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Khi đó \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{4}{3}\)
Đẳng thức xảy ra tại a=b=c=2/3
cho các số thực a,b,c thỏa mãn : \(a^2+b^2+c^2\le8\). Tìm GTNN của biểu thức S=2016ac-ab-bc
ai giải giùm mk vs. ai giải đc từ nay về sau mk gọi ng đó là sư phụ
Ta có: \(S+8\cdot1008\ge1008\left(a^2+b^2+c^2\right)+2016ac-ab-bc\)
\(=1008\left(a+c\right)^2-b\left(a+c\right)+1008b^2\)
\(=1008\left[\left(a+c\right)^2-2\left(a+c\right)\cdot\frac{b}{2016}+\frac{b^2}{2016^2}\right]+\left(1008-\frac{1}{4032}\right)b^2\)
\(=1008\left(a+c-\frac{b}{2016}\right)^2+\left(1008-\frac{1}{4032}\right)b^2\ge0\Rightarrow A\ge-8064\)
\("="\Leftrightarrow\hept{\begin{cases}a+c=\frac{b}{2016}\\b=0\\a^2+b^2+c^2=8\end{cases}\Leftrightarrow\hept{\begin{cases}a=-c=\pm2\\b=0\end{cases}}}\)