tìm nghiệm của đa thức x2-5x-6
tìm nghiệm của các đa thức:
h(x)=x2+5x+6
g(x)=2x2+7x-9
Phân tích đa thức thành nhân tử thôi bạn :
Ta có :
\(h\left(x\right)=x^2+5x+6\)
\(h\left(x\right)=x\left(x+2\right)+3\left(x+2\right)\)
\(h\left(x\right)=\left(x+2\right)\left(x+3\right)\)
\(\Rightarrow N_oh\left(x\right)=-2;-3\)
\(g\left(x\right)=2x^2+7x-9\)
\(g\left(x\right)=2x^2+9x-2x-9\)
\(g\left(x\right)=2x\left(x-1\right)+9\left(x-1\right)\)
\(g\left(x\right)=\left(x-1\right)\left(2x+9\right)\)
\(\Rightarrow N_og\left(x\right)=1;-4,5\)
Cho đa thức sau f ( x ) = x 2 + 5 x - 6 . Các nghiệm của đa thức đã cho là:
A. 2 và 3
B. 1 và - 6
C. -3 và -6
D. -3 và 8
Vậy nghiệm của đa thức f(x) là 1 và -6
Chọn đáp án B
Trong số các số bên phải của các đa thức sau, số nào là nghiệm của đa thức bên trái nó?
P x = x 2 + 5 x - 6 ; -6 -1 1 6
P(x) = x2 + 5x – 6
P(-6) = (-6)2 + 5.(-6) – 6 = 36 – 30 – 6 = 0
P(-1) = (-1)2 + 5.(-1) – 6 = 1 - 5 – 6 = - 10 ≠ 0
P(1) = 12 + 5.1 – 6 = 1 + 5 – 6 = 0
P(6) = 62 + 5.6 – 6 = 36 + 30 – 6 = 60 ≠ 0
Vậy -6 và 1 là nghiệm của P(x).
Tìm nghiệm của các đa thức một biến:
a) x2- 3x
b) 2x2+ 5x
`x^2 - 3x = 0`
`<=> x.(x-3)=0`
`<=> x = 0` hoặc `x-3=0`
`<=> x = 0 ` hoặc `x = 3`
Vậy `S = { 0;3}`
`2x^2 + 5x = 0`
`<=> x.(2x + 5)=0`
`<=> x = 0` hoặc `2x+5=0`
`<=> x = 0` hoặc `2x= -5`
`<=> x = 0` hoặc `x = -5/2`
Vậy `S = {0; -5/2}`
\(a,x^2-3x=0\\ x\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\\ b,2x^2+5x=0\\ x\left(2x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
`x^2 -3x=0`
`=>x(x-3)=0`
\(=>\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
b)
`2x^2 +5x=0`
`=>x(2x+5)=0`
\(=>\left[{}\begin{matrix}x=0\\2x+5=0\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Tìm một nghiệm của đa thức f(x) biết: f(x) = x2 – 5x + 4
Đa thức f(x) = x2 – 5x + 4 có dạng ax2 + bx+ c trong đó hệ số a = 1, b = -5, c = 4
Ta có: a + b + c = 1 + (-5) + 4 = 1 – 5 + 4 = 0
Theo bài 46, vì a + b + c = 0 nên đa thức f(x) = x2 – 5x + 4 có nghiệm x = 1
Cho đa thức sau:
f(x) = x2 + 5x - 6.
Các nghiệm của đa thức đã cho:
A. 2 và 3
B. 1 và -6
C. -3 và -6
D. -3 và
f(x)=x^2+5x-6=0
=(x^2+ 2x5/2+ 25/4)-(7/2)^2=0
=>(x+5/2)^2=(7/2)^2
TH1:x+5/2=7/2=>x=1
TH2:x+5/2=-7/2=>x=-6
Chọn A
Tìm nghiệm của đa thức
1) 4x + 9 2) -5x + 6 3) x2 - 1 4) x2 - 9
5) x2 - x 6) x2 - 2x 7) x2 - 3x 8) 3x2 - 4x
Lời giải:
1.
$4x+9=0$
$4x=-9$
$x=\frac{-9}{4}$
2.
$-5x+6=0$
$-5x=-6$
$x=\frac{6}{5}$
3.
$x^2-1=0$
$x^2=1=1^2=(-1)^2$
$x=\pm 1$
4.
$x^2-9=0$
$x^2=9=3^2=(-3)^2$
$x=\pm 3$
5.
$x^2-x=0$
$x(x-1)=0$
$x=0$ hoặc $x-1=0$
$x=0$ hoặc $x=1$
6.
$x^2-2x=0$
$x(x-2)=0$
$x=0$ hoặc $x-2=0$
$x=0$ hoặc $x=2$
7.
$x^2-3x=0$
$x(x-3)=0$
$x=0$ hoặc $x-3=0$
$x=0$ hoặc $x=3$
8.
$3x^2-4x=0$
$x(3x-4)=0$
$x=0$ hoặc $3x-4=0$
$x=0$ hoặc $x=\frac{4}{3}$
b) Cho đa thức f(x) = x2 - 5x - 35. Chứng tỏ x = -5 là nghiệm của đa thức f(x) và
x = 5 không là nghiệm của đa thức f(x).
Cái nào cũng không phải là nghiệm hết ạ;-;
Cho hai đa thức
A ( x ) = x 5 + x 2 + 5 x + 6 - x 5 - 3 x - 5 , B ( x ) = x 4 + 2 x 2 - 3 x - 3 - x 4 - x 2 + 3 x + 4
c. Chứng tỏ rằng x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x)
c. Thay x = -1 vào A(x) và B(x) ta có:
A(-1) = 0, B(-1) = 2
Vậy x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x) (1 điểm)
Cho hai đa thức
f ( x ) = - 2 x 2 - 3 x 3 - 5 x + 5 x 3 - x + x 2 + 4 x + 3 + 4 x 2 , g ( x ) = 2 x 2 - x 3 + 3 x + 3 x 3 + x 2 - x - 9 x + 2
c. Tìm nghiệm của h(x)
c. Ta có h(x) = 0 ⇒ 5x + 1 = 0 ⇒ x = -1/5
Vậy nghiệm của đa thức h(x) là x = -1/5 (1 điểm)