Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Thị Thu Hương
Xem chi tiết
Bùi Thị Thu Hương
10 tháng 1 2020 lúc 22:12

giúp em với mọi người ơi:<<<<<

Khách vãng lai đã xóa
Hoài An
Xem chi tiết
Yeutoanhoc
24 tháng 2 2021 lúc 19:49

`a,(x+3)(x^2+2021)=0`

`x^2+2021>=2021>0`

`=>x+3=0`

`=>x=-3`

`2,x(x-3)+3(x-3)=0`

`=>(x-3)(x+3)=0`

`=>x=+-3`

`b,x^2-9+(x+3)(3-2x)=0`

`=>(x-3)(x+3)+(x+3)(3-2x)=0`

`=>(x+3)(-x)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$

`d,3x^2+3x=0`

`=>3x(x+1)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$

`e,x^2-4x+4=4`

`=>x^2-4x=0`

`=>x(x-4)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$

Nguyễn Trần Thành Đạt
24 tháng 2 2021 lúc 19:13

1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)

=> S={-3}

 

Nguyễn Lê Phước Thịnh
24 tháng 2 2021 lúc 20:07

Bài 1: 

a) Ta có: \(\left(x+3\right)\left(x^2+2021\right)=0\)

mà \(x^2+2021>0\forall x\)

nên x+3=0

hay x=-3

Vậy: S={-3}

Bài 2: 

b) Ta có: \(x\left(x-3\right)+3\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy: S={3;-3}

Cô gái thất thường (Ánh...
Xem chi tiết
Pham Van Hung
1 tháng 3 2019 lúc 21:27

Đặt: \(x^2-6x+9=t\left(t\ge0\right)\)

Khi đó: \(\left(x^2-6x+9\right)^2-15\left(x^2-6x+10\right)=1\)

\(\Leftrightarrow t^2-15\left(t+1\right)=1\Leftrightarrow t^2-15t-15=1\)

\(\Leftrightarrow t^2-15t-16=0\Leftrightarrow\left(t-16\right)\left(t+1\right)=0\Leftrightarrow t=16\left(t\ge0\right)\) 

\(\Leftrightarrow x^2-6x+9=16\Leftrightarrow\left(x-3\right)^2=16\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=4\\x-3=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-1\end{cases}}\)

Tập nghiệm của pt: \(S=\left\{7;-1\right\}\)

Nobi Nobita
28 tháng 4 2020 lúc 9:44

Đặt \(x^2-6x+9=t\)

\(\Rightarrow\)Phương trình ban đầu trở thành: \(t^2-15\left(t+1\right)=1\)

\(\Leftrightarrow t^2-15t-15=1\)\(\Leftrightarrow t^2-15t-16=0\)

\(\Leftrightarrow\left(t^2+t\right)-\left(16t+16\right)=0\)\(\Leftrightarrow t\left(t+1\right)-16\left(t+1\right)=0\)

\(\Leftrightarrow\left(t+1\right)\left(t-16\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}t+1=0\\t-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=-1\\t=16\end{cases}}\)

Ta thấy: \(x^2-6x+9=\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow t\ge0\)\(\Rightarrow t=16\)\(\Rightarrow x^2-6x+9=16\)

\(\Leftrightarrow x^2-6x-7=0\)\(\Leftrightarrow\left(x^2+x\right)-\left(7x+7\right)=0\)

\(\Leftrightarrow x\left(x+1\right)-7\left(x+1\right)=0\)\(\Leftrightarrow\left(x+1\right)\left(x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=7\end{cases}}\)

Vậy tập nghiệm của phương trình là: \(S=\left\{-1;7\right\}\)

Khách vãng lai đã xóa
Khiếu Minh Quân
28 tháng 4 2020 lúc 15:42

dau lon dau buoi

Khách vãng lai đã xóa
shayuri.shayuri.shayuri
Xem chi tiết
HaNa
24 tháng 5 2023 lúc 14:39

a. Vì \(0< 0,1< 1\) nên bất phương trình đã cho 

\(\Leftrightarrow0< x^2+x-2< x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-2>0\\x^2-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>1\end{matrix}\right.\\-\sqrt{5}< x< \sqrt{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{5}< x< -2\\1< x< \sqrt{5}\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là \(S=\left\{-\sqrt{5};-2\right\}\) và \(\left\{1;\sqrt{5}\right\}\)

b. Điều kiện \(\left\{{}\begin{matrix}2-x>0\\x^2-6x+5>0\end{matrix}\right.\)

Ta có:

 \(log_{\dfrac{1}{3}}\left(x^2-6x+5\right)+2log^3\left(2-x\right)\ge0\)

\(\Leftrightarrow log_{\dfrac{1}{3}}\left(x^2-6x+5\right)\ge log_{\dfrac{1}{3}}\left(2-x\right)^2\)

\(\Leftrightarrow x^2-6x+5\le\left(2-x\right)^2\)

\(\Leftrightarrow2x-1\ge0\)

Bất phương trình tương đương với:

\(\left\{{}\begin{matrix}x^2-6x+5>0\\2-x>0\\2x-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1\\x>5\end{matrix}\right.\\x< 2\\x\ge\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{2}\le x< 1\)

Vậy tập nghiệm của bất phương trình là: \(\left(\dfrac{1}{2};1\right)\)

Mai Thị Thúy
Xem chi tiết
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2023 lúc 20:16

a:

ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};1\right\}\)

 \(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}=\dfrac{x^2-4x+4}{2x^2-2x-3x+3}\)

=>\(y=\dfrac{x^2-4x+4}{2x^2-5x+3}\)

=>\(y'=\dfrac{\left(x^2-4x+4\right)'\left(2x^2-5x+3\right)-\left(x^2-4x+4\right)\left(2x^2-5x+3\right)'}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{\left(2x-4\right)\left(2x^2-5x+3\right)-\left(2x-5\right)\left(x^2-4x+4\right)}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{4x^3-10x^2+6x-8x^2+20x-12-2x^3+8x^2-8x+5x^2-20x+20}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{2x^3-5x^2-2x+8}{\left(2x^2-5x+3\right)^2}\)

b:

ĐKXĐ: x<>-3

 \(y=\left(x+3\right)+\dfrac{4}{x+3}\)

=>\(y'=\left(x+3+\dfrac{4}{x+3}\right)'=1+\left(\dfrac{4}{x+3}\right)'\)

\(=1+\dfrac{4'\left(x+3\right)-4\left(x+3\right)'}{\left(x+3\right)^2}\)

=>\(y'=1+\dfrac{-4}{\left(x+3\right)^2}=\dfrac{\left(x+3\right)^2-4}{\left(x+3\right)^2}\)

y'=0

=>\(\left(x+3\right)^2-4=0\)

=>\(\left(x+3+2\right)\left(x+3-2\right)=0\)

=>(x+5)(x+1)=0

=>x=-5 hoặc x=-1

c:

ĐKXĐ: x<>-2

 \(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\)

=>\(y=\dfrac{5x^2+5x-x-1}{x+2}=\dfrac{5x^2+4x-1}{x+2}\)

=>\(y'=\dfrac{\left(5x^2+4x-1\right)'\left(x+2\right)-\left(5x^2+4x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{\left(5x+4\right)\left(x+2\right)-\left(5x^2+4x-1\right)}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{5x^2+10x+4x+8-5x^2-4x+1}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{10x+9}{\left(x+2\right)^2}\)

\(y'\left(-1\right)=\dfrac{10\cdot\left(-1\right)+9}{\left(-1+2\right)^2}=\dfrac{-1}{1}=-1\)

d: 

ĐKXĐ: x<>2

\(y=x-2+\dfrac{9}{x-2}\)

=>\(y'=\left(x-2+\dfrac{9}{x-2}\right)'=1+\left(\dfrac{9}{x-2}\right)'\)

\(=1+\dfrac{9'\left(x-2\right)-9\left(x-2\right)'}{\left(x-2\right)^2}\)

=>\(y'=1+\dfrac{-9}{\left(x-2\right)^2}=\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}\)

y'=0

=>\(\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}=0\)

=>\(\left(x-2\right)^2-9=0\)

=>(x-2-3)(x-2+3)=0

=>(x-5)(x+1)=0

=>x=5 hoặc x=-1

Cô gái thất thường (Ánh...
Xem chi tiết
Con Chim 7 Màu
2 tháng 3 2019 lúc 21:11

\(\Leftrightarrow\left(x^2-6x+9\right)^2-1-15\left(x^2-6x+10\right)=0\)

\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2-6x+10\right)-15\left(x^2-6x+10\right)=0\)

\(\Leftrightarrow\left(x^2-6x+10\right)\left(x^2-6x-7\right)=0\)

\(\Leftrightarrow\left(x^2-6x+10\right)\left(x^2+x-7x-7\right)=0\)

\(\Leftrightarrow\left(x^2-6x+10\right)\left(x+1\right)\left(x-7\right)=0\)

\(Vi:x^2-6x+10=0\Leftrightarrow\left(x-3\right)^2+1>0,\forall x\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

\(hay:x-7=0\Leftrightarrow x=7\)

\(V...\)

\(:)\)

Minh Hoàng Nguyễn
Xem chi tiết
kodo sinichi
29 tháng 3 2022 lúc 10:57

x=2-2*căn bậc hai(3), x=2

 
Jonit Black
Xem chi tiết
Nguyễn Ngọc Lộc
5 tháng 2 2021 lúc 15:02

đề câu 2 có sai gì ko v