Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yêu các anh như ARMY yêu...
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2020 lúc 23:39

\(VT=\sum\sqrt{\frac{1}{2}\left(x^2+2xy+y^2\right)+\frac{3}{2}\left(x^2+y^2\right)}\)

\(VT\ge\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{3}{4}\left(x+y\right)^2}=\sum\sqrt{\frac{5}{4}\left(x+y\right)^2}\)

\(VT\ge\frac{\sqrt{5}}{2}\left(x+y\right)+\frac{\sqrt{5}}{2}\left(y+z\right)+\frac{\sqrt{5}}{2}\left(z+x\right)\)

\(VT\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

TXT Channel Funfun
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 2 2021 lúc 6:23

Đề bài sai, phản ví dụ: \(x=y=\dfrac{1}{16};z=256\)

Nói chung, chỉ cần 2 biến đủ nhỏ là BĐT này đều sai

 

Nguyễn Hoàng Sinh
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2022 lúc 23:46

Đặt vế trái của BĐT cần chứng minh là P

Ta có:

\(P=\dfrac{\sqrt{xy+\left(x+y+z\right)z}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}=\dfrac{\sqrt{\left(x+z\right)\left(y+z\right)}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}\)

\(P\ge\dfrac{\sqrt{\left(\sqrt{xy}+z\right)^2}+\sqrt{\left(x+y\right)^2}}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+x+y+z}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+1}{1+\sqrt{xy}}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y\)

VUX NA
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2021 lúc 14:36

\(VT^2\le3\left(\dfrac{1}{2x^2+y^2+3}+\dfrac{1}{2y^2+z^2+3}+\dfrac{1}{2z^2+x^2+3}\right)\)

Mặt khác:

\(\dfrac{1}{2\left(x^2+1\right)+y^2+1}\le\dfrac{1}{4x+2y}=\dfrac{1}{2}\left(\dfrac{1}{x+x+y}\right)\le\dfrac{1}{18}\left(\dfrac{2}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow VT^2\le\dfrac{1}{6}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\)

\(\Rightarrow VT\le\dfrac{\sqrt{6}}{2}\)

Trần Thanh Bình 10A2
Xem chi tiết
hoclagipi88888
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2020 lúc 16:41

\(\left(x+1+\sqrt{\left(x+1\right)^2+1}\right)\left(y-1+\sqrt{\left(y-1\right)^2+1}\right)=0\) (1)

Nhân 2 vế với \(\sqrt{\left(x+1\right)^2+1}-\left(x+1\right)\) và rút gọn

\(\Rightarrow y-1+\sqrt{\left(y-1\right)^2+1}=\sqrt{\left(x+1\right)^2+1}-\left(x+1\right)\) (2)

Nhân 2 vế của (1) với \(\sqrt{\left(y-1\right)^2+1}-\left(y-1\right)\) và rút gọn

\(\Rightarrow x+1+\sqrt{\left(x+1\right)^2+1}=\sqrt{\left(y-1\right)^2+1}-\left(y-1\right)\) (3)

Cộng vế với vế (2) và (3) và rút gọn:

\(\Rightarrow y+x=-x-y\)

\(\Leftrightarrow2\left(x+y\right)=0\Rightarrow x+y=0\)

Đặng Anh Tuấn
Xem chi tiết
Ngô Thành Chung
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2020 lúc 23:32

\(\sqrt{x^2+y^2+y^2}\ge\sqrt{3\sqrt[3]{x^2y^4}}=\sqrt{3}.\sqrt[3]{xy^2}\)

\(\Rightarrow VT\ge\sqrt{3}\left(\frac{\sqrt[3]{xy^2}}{z}+\frac{\sqrt[3]{yz^2}}{x}+\frac{\sqrt[3]{zx^2}}{y}\right)\)

\(\Rightarrow VT\ge3\sqrt{3}\sqrt[3]{\frac{\sqrt[3]{xy^2.yz^2.zx^2}}{xyz}}=3\sqrt{3}.\sqrt[3]{\frac{\sqrt[3]{x^3y^3z^3}}{xyz}}=3\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z\)

Phạm Minh Quang
14 tháng 5 2020 lúc 22:56