\(VT\le\sqrt{2\left(1+2x+1+2y\right)}=2\sqrt{1+x+y}\)
\(VT\le2\sqrt{1+\sqrt{2\left(x^2+y^2\right)}}=2\sqrt{3}\)
Dấu "=" xảy ra khi \(x=y=1\)
\(VT\le\sqrt{2\left(1+2x+1+2y\right)}=2\sqrt{1+x+y}\)
\(VT\le2\sqrt{1+\sqrt{2\left(x^2+y^2\right)}}=2\sqrt{3}\)
Dấu "=" xảy ra khi \(x=y=1\)
Cho x,y thỏa mãn x,y thuộc R và 0\(\le x,y\le\dfrac{1}{2}\) chứng minh rằng \(\dfrac{\sqrt{x}}{1+y}+\dfrac{\sqrt{y}}{1+x}\le\dfrac{2\sqrt{2}}{3}\)
Với 0 <= x,y <= \(\dfrac{1}{2}\) Chứng minh:
\(\dfrac{\sqrt{x}}{y+1}+\dfrac{\sqrt{y}}{x+1}< =\dfrac{2\sqrt{2}}{3}\)
Bài 1:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0, chứng minh rằng: \(2\sqrt{\frac{x}{y+z}}+2\sqrt{\frac{y}{z+x}}+3\sqrt[3]{\frac{z}{x+y}}\ge5\)
Bài 2:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0, z = max {x, y, z), chứng minh rằng: \(\sqrt{\frac{x}{y+z}}+2\sqrt{\frac{y}{z+x}}+3\sqrt[3]{\frac{z}{x+y}}\ge4\)
Bài 3:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0 và x + y + z = 2,chứng minh rằng: \(\frac{x}{\sqrt{4x+3yz}}+\frac{y}{\sqrt{4y+3xz}}+\frac{z}{\sqrt{4z+3xy}}\)
Bài 4:
Với x, y, z là các số thực dương, chứng minh rằng: \(\frac{a}{\sqrt{a^2+15bc}}+\frac{b}{\sqrt{b^2+15ca}}+\frac{c}{\sqrt{c^2+15ab}}\)
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình!!! PLEASE!!!
Đề thi học sinh giỏi lớp 9 cấp tỉnh của tỉnh Thái Bình
Câu 1:
Cho x=\(\dfrac{\left(\sqrt{5}-1\right)\sqrt[3]{16+8\sqrt{5}}}{\sqrt[3]{10+6\sqrt{3}-\sqrt{3}}}\) Tính A=\(\left(77x^2+35x+646\right)^{2017}\)
Câu 2:
Cho các đa thức P(x) và Q(x) thỏa mãn P(x)=\(Q\left(x\right)+\left(x^2-x+1\right).Q\left(1-x\right)\)với mọi x thuộc R.Biết rằng các hệ số của P(x) là các số nguyên không âm và P(0)=0.Tính Q(2017)
Câu 3: Tìm nghiệm nguyên của Pt \(\left(2x-y-2\right)^2=7\left(x-2y-y^2-1\right)\)
Câu 4: giải pt, hot sau
1) \(\sqrt{3x-1}+\sqrt{x^2+17x+1}=x^2+3\)
2) \(\left\{{}\begin{matrix}x^3-3xy^2-x+1=x^2-2xy-y^2\\y^3-3x^2y+y-1=y^2-2xy-x^2\end{matrix}\right.\)
Câu 5: Cho tam giác đều ABC, M là điểm nằm trong tam giác. Gọi D,E,F thuộc AB,BC,AC sao cho MD//BC,ME//AC,MF//AB.Chứng minh rằng \(S_{ABC}\ge3S_{DEF}\)
Câu 6:Cho tam giác ABC nhọn nội tiếp (O) có AH=OA.E,F là chân đường cao hạ từ H đến AB,AC.Chứng minh rằng EF đi qua trung điểm của OA
Câu 6: Cho các số dương x,y,z sao cho \(\dfrac{12}{xy}+\dfrac{20}{yz}+\dfrac{15}{zx}\le1\)
Tìm max cúa P=\(\dfrac{3}{\sqrt{x^2+9}}+\dfrac{4}{\sqrt{y^2+16}}+\dfrac{5}{\sqrt{z^2+25}}\)
Cho các số dương x, y, z thỏa mãn \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Chứng minh rằng: \(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\le\frac{3}{2}\)
Cho biểu thức: P = \(\left(\frac{2}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}\right).\frac{\sqrt{x}}{x+\sqrt{x}+2}\) với x >= 0 và x khác 1
a) Chứng minh rằng P = \(\frac{\sqrt{x}}{x-1}\)
b) Với giá trị nào của x thì P = \(\frac{1}{2}\)
cho x,y,z là 3 số nguyên dương thỏa mãn
\(\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}=14\)
vậy a=......,b=......,c=........
Bài 7: a)Chứng minh rằng nếu x2 + y2 = 1 thì -\(\sqrt{2}\)\(\le x+y\)\(\le\)\(\sqrt{2}\)
b)Cho x, y, z là các số thực dương, chứng minh :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\)\(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\)
cho x,y,z là ba số nguyên dương và Q=\(\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}\). tìm giá trị nhỏ nhất của Q