Tìm m để phương trình x2 - (m+1)x - 2m2 3m - 5 =0 có hai nghiệm x1;x2 thỏa mãn x12 + x22 =3
cho phương trình 2x2-4mx+2m2-1=0 (1),với x là ẩn, m là tham số. gọi hai nghiệm của phương trình (1) là x1,x2. tìm m để 2x12+4mx2+2m2-9<0
Ta có: \(\Delta'=2>0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-\dfrac{1}{2}\end{matrix}\right.\)
Mặt khác: \(2x_1^2+4mx_2+2m^2-9< 0\)
\(\Rightarrow2x_1^2+\left(2x_1+2x_2\right)x_2+2m^2-9< 0\)
\(\Leftrightarrow2\left(x_1^2+x_2^2\right)+2x_1x_2+2m^2-9< 0\)
\(\Leftrightarrow2\left(x_1+x_2\right)^2-2x_1x_2+2m^2-9< 0\)
\(\Rightarrow8m^2-2\left(m^2-\dfrac{1}{2}\right)+2m^2-9< 0\)
\(\Leftrightarrow-\dfrac{\sqrt{5}}{2}< m< \dfrac{\sqrt{5}}{2}\)
Vậy ...
Tìm m để phương trình
3 log 27 2 x 2 - x + 2 m - 4 m 2 + log 1 3 x 2 + m x - 2 m 2 = 0
có hai nghiệm x 1 ; x 2 sao cho x 1 2 + x 2 2 > 1
A. - 1 < m ≤ 0 2 5 < m < 1 2
B. - 1 ≤ m < 0 2 5 < m < 1 2
C. - 1 < m < 0 2 5 < m < 1 2
D. - 1 < m < 0 2 5 ≤ m < 1 2
Ta có:
3 log 27 2 x 2 - x + 2 m - 4 m 2 + log 1 3 x 2 + m x - 2 m 2 = 0 ⇔ log 3 2 x 2 - x + 2 m - 4 m 2 = log 3 x 2 + m x - 2 m 2 ⇔ x 2 + m x - 2 m 2 > 0 2 x 2 - x + 2 m - 4 m 2 = x 2 + m x - 2 m 2 ⇔ x 2 + m x - 2 m 2 > 0 x 2 - m + 1 x + 2 m - 2 m 2 = 0 ⇔ x = m x = 1 - m
Phương trình đã cho có hai nghiệm x 1 ; x 2 thỏa mãn x 1 2 + x 2 2 > 1
Đáp án C
Cho pt: x2 - (m + 2) + 7m - 2m2 - 3 = 0 (với x là ẩn số) (1)
a) Chứng tỏ phương trình (1) luôn có 2 nghiệm phân biệt.
b) Tìm m để phương trình (1) có hai nghiệm x1 , x2 thỏa hệ thức:
2(x12 - x22) - 5x1x2 = 2
phương trình bạn copy thiếu ak bạn ơi?
Cho phương trình: x2 - 2(m - 1)x + m2 - 3m = 0 (1) với m là tham số.
a) Giải phương trình (1) khi m = 0.
b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn điều kiện: |x1| - 4 ≥ - |x2|
a) Thay m=0 vào phương trình (1), ta được:
\(x^2-2\cdot\left(0-1\right)x+0^2-3m=0\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy: Khi m=0 thì S={0;-2}
Bài 1
Cho Phương trình \(x^2-\left(m+5\right)x+3m+6=0\) Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5.
Bài 2
Cho phương trình x2-2(m-3)x+2(m-1)=0, Tìm m để phuowngt rình có 2 nghiệm phân biệt sao cho biểu thức T=x12 + x22 đạt giá trị nhỏ nhất.
Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức VI-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\)
Mà \(x_1,x_2\) là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5 nên ta có:\(\Rightarrow x_1^2+x_2^2=25\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\Rightarrow\left(m+5\right)^2-2\left(3m+6\right)=25\Leftrightarrow m^2+10m+25-6m-12=25\Leftrightarrow m^2+4m-12=0\Leftrightarrow m^2-2m+6m-12=0\Leftrightarrow\left(m-2\right)\left(m+6\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-6\end{matrix}\right.\) b Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m-6\\x_1x_2=2m-2\end{matrix}\right.\) \(\Rightarrow T=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m-6\right)^2-2\left(2m-2\right)=4m^2-24m+36-4m+4=4m^2-28m+40=4m^2-28m+49-9=\left(2m-7\right)^2-9\ge-9\) Dấu = xảy ra \(\Leftrightarrow m=\dfrac{7}{2}\)
Cho phương trình: x2 - 5x +m -1 = 0 (m là tham số). a) Giải phương trình trên khi m = -5. b) Tìm m để phương trình trên có hai nghiệm x1, X2 thỏa mãn: x1-x= 3. c) Tìm m để phưrơng trình trên có hai nghiệm x1, X2 thỏa mãn 2x, - 3x, = 5 d) Tìm m để phương trình trên có hai nghiệm x1, X2 thòa mãn (x - 1) +(x, -1) = 5 e) Tìm m đề phương trình trên có hai nghiệm x1, X2 thỏa mãn (x, - 1) +(x,-1) +2x,x, <5 g) Tìm m để phương trình trên có hai nghiệm x1, X2 thỏa mãn x <1
a: Khi m=-5 thì pt sẽ là x^2-5x-6=0
=>x=6 hoặc x=-1
b:
Δ=(-5)^2-4(m-1)=25-4m+4=-4m+29
Để pt có hai nghiệm thì -4m+29>=0
=>m<=29/4
x1-x2=3
=>(x1-x2)^2=9
=>(x1+x2)^2-4x1x2=9
=>5^2-4(m-1)=9
=>4(m-1)=25-9=16
=>m-1=4
=>m=5(nhận)
c: 2x1-3x2=5 và x1+x2=5
=>x1=4 và x2=1
x1*x2=m-1
=>m-1=4
=>m=5(nhận)
Cho phương trình ( m + 1 ) x 2 + ( 3 m - 1 ) x + 2 m - 2 = 0 . Xác định m để phương trình có hai nghiệm x 1 , x 2 mà x 1 + x 2 = 3 . Tính các nghiệm trong trường hợp đó.
Với m ≠ -1
Ta có: Δ = ( m - 3 ) 2 ≥ 0 , do đó phương trình luôn luôn có hai nghiệm x 1 , x 2
Lúc đó phương trình đã cho có hai nghiệm x = -1 và x = 4.
Tìm m để phương trình x^2-(3m-1)x+2m^2-m=0 có nghiệm x1, x2 thỏa mãn x1=x2^2
\(PT\Leftrightarrow\left(x-2m+1\right)\left(x-m\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2m-1\\x=m\end{matrix}\right.\).
+) TH1: \(\left\{{}\begin{matrix}x_1=2m-1\\x_2=m\end{matrix}\right.\Rightarrow m^2=2m-1\Leftrightarrow m=1\).
+) TH2: \(\left\{{}\begin{matrix}x_1=m\\x_2=2m-1\end{matrix}\right.\Rightarrow\left(2m-1\right)^2=m\Leftrightarrow\left(m-1\right)\left(4m-1\right)=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{4}\end{matrix}\right.\).
Vậy...
Cho phương trình x 2 – (2m – 3)x + m 2 – 3m = 0. Xác định m để phương trình có hai nghiệm x 1 ; x 2 thỏa mãn 1 < x 1 < x 2 < 6
A. m < 6
B. m > 4
C. 4 ≤ m ≤ 6
D. 4 < m < 6
Xét phương trình x 2 – (2m – 3)x + m 2 – 3m = 0 có a = 1 ≠ 0 và
∆ = ( 2 m – 3 ) 2 – 4 ( m 2 – 3 m ) = 9 > 0
Phương trình luôn có hai nghiệm phân biệt x 1 ; x 2
Áp dụng định lý Vi-ét ta có: x 1 + x 2 = 2 m – 3 ; x 1 . x 2 = m 2 – 3 m
Ta có 1 < x 1 < x 2 < 6
⇔ x 1 − 1 x 2 − 1 > 0 x 1 + x 2 > 1 x 1 − 6 x 2 − 6 > 0 x 1 + x 2 < 12 ⇔ x 1 x 2 − x 1 + x 2 + 1 > 0 x 1 + x 2 > 1 x 1 x 2 − 6 x 1 + x 2 + 36 > 0 x 1 + x 2 < 12 ⇔ m 2 − 3 m − 2 m + 3 + 1 > 0 2 m − 3 > 1 m 2 − 3 m − 6 2 m − 3 + 36 > 0 2 m − 3 < 12 ⇔ m 2 − 5 m + 4 > 0 2 m > 4 m 2 − 15 m + 54 > 0 2 m < 15 ⇔ m < 1 m > 4 m > 2 m < 6 m > 9 m < 15 2
⇔ 4 < m < 6
Đáp án: D
Cho phương trình: -(m+4)x + 3m +3=0 (x là ẩn số) a) Chứng minh phương trình đã cho luôn có nghiệm với mọi gia trị của m b) Tính tổng và tích hai nghiệm của phương trình c) Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn: - x1 = x2 - + 8
\(\Delta=\left(m+4\right)^2-4\left(3m+3\right)=m^2-4m+4=\left(m-2\right)^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+4\\x_1x_2=3m+3\end{matrix}\right.\)
\(x_1^2-x_1=x_2-x_2^2+8\)
\(\Leftrightarrow x_1^2+x_2^2-\left(x_1+x_2\right)-8=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)-8=0\)
\(\Leftrightarrow\left(m+4\right)^2-2\left(3m+3\right)-\left(m+4\right)-8=0\)
\(\Leftrightarrow m^2+m-2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)