Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
12.09
Xem chi tiết
Nguyễn Xuân Tài
Xem chi tiết
YangSu
10 tháng 3 2023 lúc 21:18

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)

\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)

\(\Leftrightarrow-7m^2+38m-15< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(KL:m\in\left(5;+\infty\right)\)

Tranthihaiyen
Xem chi tiết
Cac chien binh thuy thu...
Xem chi tiết
Dương hùng
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 3 2022 lúc 11:15

Chắc đề là \(f\left(x\right)=x^2+mx+m+3\)

Để \(f\left(x\right)>0;\forall x\in R\)

\(\Leftrightarrow\Delta=m^2-4\left(m+3\right)< 0\)

\(\Leftrightarrow m^2-4m-12< 0\)

\(\Rightarrow-2< m< 6\)

Nguyễn Minh Đức
Xem chi tiết
Phước Cương Bùi
Xem chi tiết
Akai Haruma
21 tháng 7 2017 lúc 23:37

Lời giải:

Áp dụng định lý về dấu của tam thức bậc 2.

a)

Để hàm \(f(x)=4x^2-(m+2)x+2m-3>0\forall x\in\mathbb{R}\)

\(\Leftrightarrow \Delta=(m+2)^2-16(2m-3)<0\)

\(\Leftrightarrow m^2-28m+52=(m-2)(m-26)<0\)

\(\Leftrightarrow 2< m<26\)

b)

Nếu \(m=-1\rightarrow f(x)=-6x\) không thể âm với mọi $x$

Nếu \(m\neq -1\):

Để \(f(x)=(m+1)x^2+2(2m-1)x-m-1<0\forall x\in\mathbb{R}\) thì cần hai đk sau:

1. \(m+1<0\leftrightarrow m<-1\)

2. \(\Delta'=(2m-1)^2+(m+1)^2<0\) (hiển nhiên vô lý)

Vậy không tồn tại $m$ thỏa mãn.

Nguyễn Hoài Thương
Xem chi tiết
Hồng Phúc
13 tháng 3 2021 lúc 21:14

Đề còn thiếu kìa.

Kimian Hajan Ruventaren
Xem chi tiết