Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Công Trần
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2022 lúc 22:38

\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có 2 nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m+1}{2}\\x_1x_2=\dfrac{m-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)=-2m+1\\4x_1x_2=2m-2\end{matrix}\right.\)

Cộng vế với vế:

\(\Rightarrow2\left(x_1+x_2\right)+4x_1x_2=-1\)

Đây là hệ thức liên hệ các nghiệm ko phụ thuộc m

Trần Diễm Quỳnh
Xem chi tiết
Hoàng Lê Bảo Ngọc
10 tháng 6 2016 lúc 12:57

Áp dụng hệ thức Vi-et, ta có : \(\hept{\begin{cases}x_1+x_2=2\left(m-3\right)\\x_1.x_2=-m^2+1\end{cases}\Rightarrow\hept{\begin{cases}x_1+x_2=2m-6\\1-x_1.x_2=m^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m-6\\2\sqrt{1-x_1.x_2}=2m\end{cases}\Rightarrow}\left(x_1+x_2\right)-2\sqrt{1-x_1.x_2}+6=0}\)

Vũ Hồng Vân
Xem chi tiết
Hồng Phúc
30 tháng 8 2021 lúc 22:54

Theo định lí Vi-ét: 

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=-m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m+2\\2x_1x_2=-2m\end{matrix}\right.\)

\(\Rightarrow x_1+x_2+2x_1x_2=2\)

•¢ɦẹρ➻¢ɦẹρ
30 tháng 8 2021 lúc 22:58

Theo định lí Vi-ét: 

{x1+x2=2(m+1)x1x2=−m{x1+x2=2(m+1)x1x2=−m

⇔{x1+x2=2m+22x1x2=−2m⇔{x1+x2=2m+22x1x2=−2m

⇒x1+x2+2x1x2=2

Wang Lucas
Xem chi tiết
Bùi Doãn Nhật Quang
26 tháng 2 2022 lúc 9:31

\(x^2+2x-1-m^2=0\Leftrightarrow\left(x-1\right)^2=m^2\)

                                    \(\Leftrightarrow x-1=\sqrt{m^2}=\left|m\right|\)

                                    \(\Leftrightarrow\left[{}\begin{matrix}x-1=m\\x-1=-m\end{matrix}\right.\)

                                    \(\Leftrightarrow\left[{}\begin{matrix}x=1+m\\x=1-m\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x_1=1+m\\x_2=1-m\end{matrix}\right.\)

Linh Lê
Xem chi tiết
Hoàng Thị Lan Hương
7 tháng 7 2017 lúc 9:33

a, Để phương trình  có 2 nghiệm \(x_1,x_2\)thì \(\Delta=\left(m-1\right)^2-\left(2m-4\right)=m^2-4m+5>0\)

Dễ thấy \(\Delta\ge1\forall m\)nên phương trình luôn có 2 nghiệm phân biệt

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=2m-4\end{cases}}\)

\(\left|x_1-x_2\right|=4\Rightarrow\left(x_1-x_2\right)^2=16\Rightarrow\left(x_1+x_2\right)^2-4x_1x_2=16\)

\(\Rightarrow4\left(m^2-2m+1\right)-4\left(2m-4\right)=16\)\(\Rightarrow m^2+2m-1=0\Rightarrow\orbr{\begin{cases}m=-1+\sqrt{2}\\m=-1-\sqrt{2}\end{cases}}\)

b. Ta có \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=2m-4\end{cases}\Rightarrow x_1+x_2-x_1.x_2}=2\) 

Rin Rin cute
Xem chi tiết
Lương Đại
3 tháng 4 2023 lúc 22:58

\(x^2-2\left(m+1\right)x+2m=0\left(1\right)\)

a, \(\Delta'=\left(m+1\right)^2-2m=m^2+>0\forall m\)

⇒ Phương trình có hai nghiệm phân biệt 

b, Để phương trình có hai nghiệm cùng dương thì : 

\(\left\{{}\begin{matrix}\Delta'>0\\S>0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+1>0\left(luôn-đúng\right)\\2\left(m+1\right)>0\\2m>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m>0\end{matrix}\right.\)\(\Leftrightarrow m>0\)

c, Theo viét \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\left(2\right)\\x_1x_2=2m\left(3\right)\end{matrix}\right.\)

Trừ vế theo vế (2) cho (3) được : \(x_1+x_2-x_1x_2=2m+2-2m=2\)

Kết luận ....

Anh Công Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 3 2022 lúc 21:35

\(\text{Δ}=\left(2m-1\right)^2-8\left(m-1\right)\)

\(=4m^2-4m+1-8m+8\)

\(=4m^2-12m+9=\left(2m-3\right)^2\)

Để phương trình có hai nghiệm phân biệt thì 2m-3<>0

hay m<>3/2

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}3x_1-4x_2=11\\x_1+x_2=\dfrac{-2m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\2x_1+2x_2=-2m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\4x_1+4x_2=-4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=-4m+13\\4x_2=3x_1-11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\4x_2=\dfrac{-12m+36}{7}-\dfrac{77}{7}=\dfrac{-12m-41}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\x_2=\dfrac{-12m-41}{28}\end{matrix}\right.\)

Theo Vi-et, ta được: \(x_1x_2=\dfrac{m-1}{2}\)

\(\Leftrightarrow\dfrac{\left(4m-13\right)\left(12m+41\right)}{196}=\dfrac{m-1}{2}\)

\(\Leftrightarrow\left(4m-13\right)\left(12m+1\right)=98\left(m-1\right)\)

\(\Leftrightarrow48m^2+4m-156m-13-98m+98=0\)

\(\Leftrightarrow48m^2-250+85=0\)

Đến đây bạn chỉ cần giải pt bậc hai là xong rồi

Nguyễn Huy Tú
9 tháng 3 2022 lúc 21:37

 \(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+10\)

\(=\left(2m-3\right)^2+1>0\)

Vậy pt có 2 nghiệm pb  

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{2}\left(1\right)\\x_1x_2=\dfrac{m-1}{2}\left(2\right)\end{matrix}\right.\)

Ta có \(3x_1-4x_2=11\left(3\right)\)

Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}4x_1+4x_2=2-4m\\3x_1-4x_2=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=13-4m\\x_2=\dfrac{1-2m}{2}-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{13-4m}{7}\\x_2=\dfrac{1-2m}{2}-\dfrac{13-4m}{7}\end{matrix}\right.\)

\(x_2=\dfrac{7-14m-26+8m}{14}=\dfrac{-19-6m}{14}\)

Thay vào (2) ta được \(\left(\dfrac{13-4m}{7}\right)\left(\dfrac{-19-6m}{14}\right)=\dfrac{m-1}{2}\)

\(\Leftrightarrow m=4,125\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 10 2019 lúc 10:57

Đáp án D

Vũ Hiền
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
27 tháng 4 2021 lúc 22:00

1) Bạn tự giải

2) Ta có: \(\Delta=4m^2-8m+9>0\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m-2\end{matrix}\right.\) (*)

Mặt khác: \(x_1^2+x_2^2=2018\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=2018\)

\(\Rightarrow4m^2-4m+1-2m+4=2018\)

\(\Leftrightarrow4m^2-6m-2013=0\) \(\Leftrightarrow...\)

c)  Từ (*) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m-1\\2x_1x_2=2m-4\end{matrix}\right.\) \(\Rightarrow x_1+x_2-2x_1x_2=3\) 

                                         (Không phụ thuộc vào m)

Vangull
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 5 2021 lúc 12:46

Phương trình có 2 nghiệm pb khi:

\(\Delta'=\left(m+1\right)^2-m^2>0\Leftrightarrow2m+1>0\)

\(\Rightarrow m>-\dfrac{1}{2}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x_1+x_2-2}{2}=m\\x_1x_2=m^2\end{matrix}\right.\)

\(\Rightarrow x_1x_2=\left(\dfrac{x_1+x_2-2}{2}\right)^2\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

Pikachuuuu
9 tháng 5 2021 lúc 14:48

a,Phương trình có 2 nghiệm pb khi: \(\Delta'>0\Rightarrow\left(m+1\right)^2-m^2>0\Leftrightarrow2m+1>0\Leftrightarrow m>\dfrac{-1}{2}\)