Theo định lí Vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=-m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m+2\\2x_1x_2=-2m\end{matrix}\right.\)
\(\Rightarrow x_1+x_2+2x_1x_2=2\)
Theo định lí Vi-ét:
{x1+x2=2(m+1)x1x2=−m{x1+x2=2(m+1)x1x2=−m
⇔{x1+x2=2m+22x1x2=−2m⇔{x1+x2=2m+22x1x2=−2m
⇒x1+x2+2x1x2=2