a) Ta có: △' = [-(m+1)]2 - m + 2
= m2 + 2m + 1 - m + 2
= m2 + m + 1
= (m + \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\) ≥ \(\dfrac{3}{4}\) > 0 ∀m
=> Phương trình luôn có 2 nghiệm phân biệt
b) Theo hệ thức Viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1.x_2=m-2\end{matrix}\right.\)⇔ \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\2x_1.x_2=2m-4\end{matrix}\right.\)
=> x1 + x2 - 2x1x2 = 2m + 2 - 2m + 4 => x1 + x2 - 2x1x2 = 6