giải PT: \(\frac{10}{x+2}\)=1+\(\frac{1}{x-2}\)
Giải PT : \(\left(\frac{x}{x-1}\right)^2+\left(\frac{x}{x+1}\right)^2=\frac{10}{9}\)
ĐKXĐ: x ≠ \(\pm\) 1
Từ phương trình ban đầu suy ra:
\(x^2\left(x+1\right)^2+x^2\left(x-1\right)^2=\frac{10}{9}.\left(x^2-1\right)^2\)
⇒ \(x^4+2x^3+x^2+x^4-2x^3+x^2=\frac{10}{9}\left(x^4-2x^2+1\right)\)
⇒ \(18\left(x^4+x^2\right)=10\left(x^4-2x^2+1\right)\)
⇒ \(4x^4+19x^2-5=0\Leftrightarrow\left(x^2+5\right)\left(4x^2-1\right)=0\)
⇔ \(x^2=\frac{1}{4}\Leftrightarrow x=\pm\frac{1}{2}\)( thỏa mãn ĐKXĐ)
Vậy ...
giải PT \(\frac{1}{x^2-2x+1}+\frac{1}{x^2+2x+1}=\frac{10}{9}\)
Giải pt: \(x^2-x-\frac{1}{x}+\frac{1}{x^2}-10=0\)
Đặt \(\frac{1}{x}+x=a\)
Thì pt thành a2 - a - 14 = 0
Tới đây thì đơn giản rồi
Giải pt \(\frac{1}{\sqrt{x-1}+\sqrt{x-2}}+\frac{1}{\sqrt{x-2}+\sqrt{x-3}}+...+\frac{1}{\sqrt{x-9}+\sqrt{x-10}}=1\)
1. Giải PT sau
a) \(\left(\frac{x-1}{x+1}\right)^2-4\left(\frac{x^2-1}{x^2-4}\right)+3\left(\frac{x+1}{x-2}\right)^2=0\)
b) \(\frac{x^2}{3}+\frac{48}{x^2}=10\left(\frac{x}{3}-\frac{4}{x}\right)\)
1) Giải các pt:
a) 3(x - 1) - 2(x + 3)= -15
b) 3(x - 1) + 2= 3x - 1
c) 7(2 - 5x) - 5= 4(4 -6x)
2) Giải các pt phân thức: ( Tìm mẫu chung )
a) \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)
b) \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
a, Ta có : \(3\left(x-1\right)-2\left(x+3\right)=-15\)
=> \(3x-3-2x-6=-15\)
=> \(3x-3-2x-6+15=0\)
=> \(x=-6\)
Vậy phương trình có nghiệm là x = -6 .
b, Ta có : \(3\left(x-1\right)+2=3x-1\)
=> \(3x-3+2=3x-1\)
=> \(3x-3+2-3x+1=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
c, Ta có : \(7\left(2-5x\right)-5=4\left(4-6x\right)\)
=> \(14-35x-5=16-24x\)
=> \(14-35x-5-16+24x=0\)
=> \(-35x+24x=7\)
=> \(x=\frac{-7}{11}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{11}\) .
Bài 2 :
a, Ta có : \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)
=> \(\frac{x}{30}+\frac{3\left(5x-1\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{5\left(2x+3\right)}{30}\)
=> \(x+3\left(5x-1\right)=2\left(x-8\right)-5\left(2x+3\right)\)
=> \(x+15x-3=2x-16-10x-15\)
=> \(x+15x-3-2x+16+10x+15=0\)
=> \(24x+28=0\)
=> \(x=\frac{-28}{24}=\frac{-7}{6}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{6}\) .
b, Ta có : \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
=> \(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)
=> \(6\left(x+4\right)-30x+120=10x-15\left(x-2\right)\)
=> \(6x+24-30x+120=10x-15x+30\)
=> \(6x+24-30x+120-10x+15x-30=0\)
=> \(-19x+114=0\)
=> \(x=\frac{-114}{-19}=6\)
Vậy phương trình có nghiệm là x = 6 .
\(\frac{2x-1}{\left(x-2\right)^2}+\frac{5x}{x-2}-\frac{25x}{5x-10}\)
giải pt
Helppppp
1.Giải pt sau:(\(\sqrt{2}\) +2)(x\(\sqrt{2}\) -1)=2x\(\sqrt{2}\) -\(\sqrt{2}\)
2.Cho pt: 2(a-1).x-a(x-1)=2a+3
3.Giải pt sau:
a) \(\frac{2}{x+\frac{\text{1}}{\text{1}+\frac{x+\text{1}}{x-2}}}=\frac{6}{3x-\text{1}}\)
b) \(\frac{\frac{x+\text{1}}{x-\text{1}}-\frac{x-\text{1}}{x+\text{1}}}{\text{1}+\frac{x+\text{1}}{x-\text{1}}}=\frac{x-\text{1}}{2\left(x+\text{1}\right)}\)
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
Mấy bài kia sao cái phương trình dài thê,s giải sao nổi
giải pt \(10+\sqrt{3}x^3+3x+\frac{\sqrt{3}}{x^3}=5\sqrt{3}x^3+2x+\frac{2\sqrt{3}-1}{x}+\frac{5}{x^2}\)