10. A=\(\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
Giải phương trình :
a) \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=4-x\)
b) \(\frac{\sqrt{x+5}}{\sqrt{x+4}}=\frac{\sqrt{x-2}}{\sqrt{x+3}}\)
c) \(\frac{1}{x+\sqrt{x^2+1}}+\frac{1}{x-\sqrt{x^2+1}}=4\)
18.Q=\(\frac{x+2\sqrt{x}-10}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{\sqrt{x}-3}-\frac{1}{\sqrt{x}-2}\)
1.\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
Rút gọn:
a, A = \(\frac{1}{\sqrt{3}+\sqrt{1}}+\frac{1}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{7}+\sqrt{5}}+\frac{1}{\sqrt{9}+\sqrt{7}}\)
b, B = \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)
c, C = \(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}-\sqrt{6}\)
d, D = \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\) với x ≥ 2
19.A= \(\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x}-1}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}-2}\right)\)
22.\(A=\left(\frac{x}{\sqrt{x}-1}-\sqrt{x}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)
12.\(A=\left(\frac{x}{\sqrt{x}-1}-\sqrt{x}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)
13.\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+2}{\sqrt{x}+3}\)