Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hiền Thương
Xem chi tiết
Trần Thị Mỹ Duyên
Xem chi tiết
Đỗ Ngọc Hải
18 tháng 2 2018 lúc 19:48

À khác cái dấu nhưng đề phải là giải phương trình chứ
Đặt 2017-x=a => x-2018=-a-1 phương trình trở thành:
\(\frac{a^2+a\left(-a-1\right)+\left(a-1\right)^2}{a^2-a\left(-a-1\right)+\left(a-1\right)^2}=\frac{19}{49}\)
\(\Leftrightarrow\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+a+1\right)=19\left(3a^2+3a+1\right)\)

\(\Leftrightarrow49a^2+49a+49=57a^2+57a+19\)

\(\Leftrightarrow8a^2+8a-30=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=\frac{3}{2}\\a=-\frac{5}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=2015,5\\x=2019,5\end{cases}}}\)
Vậy......................

Đỗ Ngọc Hải
17 tháng 2 2018 lúc 11:51

Tử và mẫu giống nhau mà

nguyen ngoc son
Xem chi tiết
Trà Quỳnh Ngọc
2 tháng 5 2021 lúc 21:37

Chịu!!

Minh Lê Quang Khánh
Xem chi tiết
huytran
Xem chi tiết
alibaba nguyễn
13 tháng 3 2018 lúc 13:17

Dễ thấy \(x=2017\)không là nghiệm của phương trình.

Ta có:

\(\frac{1+\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)^2}{1-\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)}=\frac{13}{37}\)

Đặt \(\frac{x-2018}{2017-x}=a\)

\(\Rightarrow\frac{1+a+a^2}{1-a+a^2}=\frac{13}{37}\)

\(\Leftrightarrow24a^2+50a+24=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\\a=-\frac{4}{3}\end{cases}}\)

Anne Ha
Xem chi tiết
Nguyễn Hải Dương
7 tháng 5 2018 lúc 19:54

Đặt x - 2017 = a

Phương trình trên tương đương:

\(\dfrac{\left(-a\right)^2-\left(-a\right)\left(a-1\right)+\left(a-1\right)^2}{\left(-a\right)^2+\left(-a\right)\left(a-1\right)+\left(a-1\right)^2}=\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{a^2+a^2-a+a^2-2a+1}{a^2-a^2+a+a^2-2a+1}=\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{3a^2-3a+1}{a^2-a+1}=\dfrac{5}{3}\)

\(\Leftrightarrow9x^2-9x+3=5x^2-5x+5\)

\(\Leftrightarrow4x^2-4x-2=0\)

\(\Leftrightarrow\left(x-\dfrac{1+\sqrt{3}}{2}\right)\left(x-\dfrac{1-\sqrt{3}}{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1+\sqrt{3}}{2}\\\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình: \(S=\left\{\dfrac{1+\sqrt{3}}{2};\dfrac{1-\sqrt{3}}{2}\right\}\)

Mai Tâm Anh
Xem chi tiết
minhthu
Xem chi tiết
Hà Yến Nhi
26 tháng 9 2018 lúc 20:03

+)Nếu x < 2017 => x - 2018 = -1 => \(\left|x-2018\right|\)> 1

=> \(\left|x-2018\right|^{2018}\) >1

=> x < 2017 ko thỏa mãn

+) Nếu x = 2017 => x - 2018 = -1 => \(\left|x-2018\right|\) = 1

=> \(\left|x-2018\right|^{2018}=1\)

=> | x − 2017 | 2017 + | x − 2018 | 2018 = 1

=> x = 2017(TM)

+) Nếu 2017< x < 2018

=> 0 < x - 2017 < 1 và 2018 - x < 1

=>| x − 2017 | 2017 + | x − 2018 | 2018 < | x − 2017 |

+) |2018- x| ≤ | x-2017+2018-x| = 1

=> | x − 2017 | 2017 + | x − 2018 | 2018 < 1

=> 2017 < x < 2019 ko thỏa mãn

+) Nếu x = 2018 => x - 2017 = 1 và x - 2018 = 0

=>| x − 2017 | 2017 + | x − 2018 | 2018 = 1

=> x = 2018 thỏa mãn

+) Nếu x > 2018 => x - 2017 > 1

=> | x − 2017 | 2017 > 1

=>| x − 2017 | 2017 + | x − 2018 | 2018 > 1

=> x > 2018 ko thỏa mãn

Vậy x = 2018 là nghiệm của pt

x = 2017 là nghiệm của pt

Đẹp Trai Không Bao Giờ S...
Xem chi tiết
Lê Thị Thục Hiền
11 tháng 9 2019 lúc 21:32

Đặt \(2017=a\)

=>\(2018=a+1\)

Với mọi \(a\in N\) có:\(\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}=\sqrt{\frac{\left(a+1\right)^2+a^2\left(a+1\right)^2+a^2}{\left(a+1\right)^2}}=\sqrt{\frac{a^2+2a+1+a^2\left(a^2+2a+1\right)+a^2}{\left(a+1\right)^2}}=\sqrt{\frac{2a^2+2a+1+a^4+2a^3+a^2}{\left(a+1\right)^2}}=\sqrt{\frac{\left(a^4+2a^2+1\right)+2a\left(a^2+1\right)+a^2}{\left(a+1\right)^2}}\)

=\(\sqrt{\frac{\left(a^2+1\right)^2+2a\left(a^2+1\right)+a^2}{\left(a+1\right)^2}}=\sqrt{\frac{\left(a^2+a+1\right)}{\left(a+1\right)^2}}=\left|\frac{a^2+a+1}{a+1}\right|\)(do \(a\ge0\))

=\(\frac{a\left(a+1\right)+1}{a+1}=a+\frac{1}{a+1}\)

=> \(\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}=a+\frac{1}{a+1}\)

Thay a=2017 có:

\(\sqrt{1+2017^2+\left(\frac{2017}{2018}\right)^2}=2017+\frac{1}{2017+1}=2017+\frac{1}{2018}\)

=>\(\sqrt{1+22017^2+\left(\frac{2017}{2018}\right)^2}+\frac{2017}{2018}=2017+\frac{1}{2018}+\frac{2017}{2018}\)

<=> M=2017+1=2018

Vậy M=2018

Đẹp Trai Không Bao Giờ S...
11 tháng 9 2019 lúc 21:10