Câu 40: Số tự nhiên x thỏa mãn biểu thức
là
A. x = 2 | B. x = 3 | C. x = 4 | D. x = 5 |
Cho các số thực a, b, c, d thỏa mãn ( 2x – 1)4 = ( ax + b)4 + ( x2 + cx + d)2 với mọi giá trị của x là số thực. Tìm giá trị của biểu thức P = a + 2b + 3c + 4d
Cho các số thực a, b, c, d thỏa mãn ( 2x – 1)4 = ( ax + b)4 + ( x2 + cx + d)2 với mọi giá trị của x là số thực. Tìm giá trị của biểu thức P = a + 2b + 3c + 4d.
câu 2 : Giá trị m thỏa mãn (x2-x+1)x(x+1)x2+m -5= -2x2+x là?
A.-5 B.5 C.4 D.15
Câu4:với x=-20; giá trị của biểu thức P=(x+4)(x2-4x+16)-(64-x3) là
A. 16 000
B. 40
C. -16 000
D. -40
4:
\(P=\left(x+4\right)\left(x^2-4x+16\right)-\left(64-x^3\right)\)
\(=x^3+64-64+x^3=2x^3\)
Khi x=-20 thì \(P=2\cdot\left(-20\right)^3=-16000\)
=>Chọn C
2: Đề khó hiểu quá bạn ơi
I. PHẦN TRẮC NGHIỆM (6,0 điểm)
Câu 1. Ba số tự nhiên đồng thời thoả mãn các điều kiện , và . Tính .
A. | B. | C. | D. |
Câu 2. Số tự nhiên thỏa mãn là
A. | B. | C. | D. |
Câu 3. Cho . Giá trị của là
A. | B. | C. | D. |
A. | B. | C. | D. |
Câu 5. Biết x là số tự nhiên thỏa mãn . Giá trị của bằng
A. | B. | C. | D. |
Câu 6. Cho Câu trả lời sai là
A. | B. | C. | D. |
Câu 7. Tìm các số nguyên biết và
A. | B. | C. | D. |
Câu 8. Người ta mở rộng một cái ao hình vuông để được một cái ao hình chữ nhật có chiều dài gấp đôi chiều rộng. Sau khi mở rộng, diện tích ao tăng thêm và diện tích ao mới gấp 4 lần diện tích ao cũ. Hỏi phải dùng bao nhiêu chiếc cọc để đủ rào xung quanh ao mới? Biết rằng cọc nọ cách cọc kia .
A. cọc. | B. cọc. | C. cọc. | D. cọc. |
Câu 9. Vẽ tia chung gốc, chúng tạo ra góc. Giá trị của là
A. | B. | C. | D. |
Câu 10. Cho đoạn thẳng . Gọi là trung điểm của , là trung điểm của , là trung điểm của , khi đó có độ dài là
A. | B. | C. | D. |
Câu 11. Cho điểm phân biệt trong đó có đúng điểm thẳng hàng, còn lại không có điểm nào thẳng hàng. Hỏi có thể kẻ được bao nhiêu đường thẳng đi qua hai trong điểm đã cho?
A. | B. | C. | D. |
Câu 12. Một bình đựng viên bi xanh và viên bi đỏ. Lấy ngẫu nhiên viên bi. Xác suất để thu được bi cùng màu là
A. | B. | C. | D. |
II. TỰ LUẬN (14,0 điểm)
Câu 1. (4,0 điểm)
1.1. Tính giá trị biểu thức:
1.2. Tìm biết:
1.3. Tìm số tự nhiên lớn nhất có 3 chữ số, biết số đó chia hết cho mỗi hiệu và .
Câu 2. (4,0 điểm)
2.1. Cho biểu thức với
a) Tìm số nguyên để biểu thức
Đề lỗi ảnh hiển thị hết rồi. Bạn coi lại.
Câu 11. Số tự nhiên x thỏa mãn là
A. 1. B. 0. C. 0;1. D. Một kết quả khác.
Bài 6
Ạ)Cho a2 +4b2+9c2=2ab+6bc+3ca. Tính giá trị của biểu thức
A=(a-2b+1)2022+(2b-3c-1)2023+(3c-a+1)2024
B) cho x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0 tìm giá trị lớn nhất và nhỏ nhất của biểu thức A= x+y+2024
Bài 6
Ạ)Cho a2 +4b2+9c2=2ab+6bc+3ca. Tính giá trị của biểu thức
A=(a-2b+1)2022+(2b-3c-1)2023+(3c-a+1)2024
B) cho x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0 tìm giá trị lớn nhất và nhỏ nhất của biểu thức A= x+y+2024
A.
$a^2+4b^2+9c^2=2ab+6bc+3ac$
$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$
$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$
$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$
$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$
$\Rightarrow a-2b=a-3c=2b-3c=0$
$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$
B.
$x^2+2xy+6x+6y+2y^2+8=0$
$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$
$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$
$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)
$\Rightarrow -1\leq x+y+3\leq 1$
$\Rightarrow -4\leq x+y\leq -2$
$\Rightarrow 2020\leq x+y+2024\leq 2022$
$\Rightarrow A_{\min}=2020; A_{\max}=2022$
tìm giá trị của x thỏa mãn biểu thức x-7=5 mũ 2 là
a.42
b.4
c.144
d.32
Có mấy cặp số tự nhiên a và b thỏa mãn a + b = 48 và ước chung lớn nhất AB = 6
A:2
B:3
C:4
D:8
(6;42); (30;18)
=>A
Có mấy cặp số tự nhiên a và b thỏa mãn a + b = 48 và ước chung lớn nhất AB = 6
A:2
B:3
C:4
D:8