Câu 40: Số tự nhiên x thỏa mãn biểu thức
là
A. x = 2 | B. x = 3 | C. x = 4 | D. x = 5 |
Cho các số thực a, b, c, d thỏa mãn ( 2x – 1)4 = ( ax + b)4 + ( x2 + cx + d)2 với mọi giá trị của x là số thực. Tìm giá trị của biểu thức P = a + 2b + 3c + 4d
Cho các số thực a, b, c, d thỏa mãn ( 2x – 1)4 = ( ax + b)4 + ( x2 + cx + d)2 với mọi giá trị của x là số thực. Tìm giá trị của biểu thức P = a + 2b + 3c + 4d.
câu 2 : Giá trị m thỏa mãn (x2-x+1)x(x+1)x2+m -5= -2x2+x là?
A.-5 B.5 C.4 D.15
Câu4:với x=-20; giá trị của biểu thức P=(x+4)(x2-4x+16)-(64-x3) là
A. 16 000
B. 40
C. -16 000
D. -40
4:
\(P=\left(x+4\right)\left(x^2-4x+16\right)-\left(64-x^3\right)\)
\(=x^3+64-64+x^3=2x^3\)
Khi x=-20 thì \(P=2\cdot\left(-20\right)^3=-16000\)
=>Chọn C
2: Đề khó hiểu quá bạn ơi
I. PHẦN TRẮC NGHIỆM (6,0 điểm)
Câu 1. Ba số tự nhiên
đồng thời thoả mãn các điều kiện
,
và
. Tính
.
A. | B. | C. | D. |
Câu 2. Số tự nhiên
thỏa mãn
là
A. | B. | C. | D. |
Câu 3. Cho
. Giá trị của
là
A. | B. | C. | D. |
A. | B. | C. | D. |
Câu 5. Biết x là số tự nhiên thỏa mãn
. Giá trị của
bằng
A. | B. | C. | D. |
Câu 6. Cho
Câu trả lời sai là
A. | B. | C. | D. |
Câu 7. Tìm các số nguyên
biết
và ![]()
A. | B. | C. | D. |
Câu 8. Người ta mở rộng một cái ao hình vuông để được một cái ao hình chữ nhật có chiều dài gấp đôi chiều rộng. Sau khi mở rộng, diện tích ao tăng thêm
và diện tích ao mới gấp 4 lần diện tích ao cũ. Hỏi phải dùng bao nhiêu chiếc cọc để đủ rào xung quanh ao mới? Biết rằng cọc nọ cách cọc kia
.
A. | B. | C. | D. |
Câu 9. Vẽ
tia chung gốc, chúng tạo ra
góc. Giá trị của
là
A. | B. | C. | D. |
Câu 10. Cho đoạn thẳng
. Gọi
là trung điểm của
,
là trung điểm của
,
là trung điểm của
, khi đó
có độ dài là
A. | B. | C. | D. |
Câu 11. Cho
điểm phân biệt trong đó có đúng
điểm thẳng hàng, còn lại không có
điểm nào thẳng hàng. Hỏi có thể kẻ được bao nhiêu đường thẳng đi qua hai trong
điểm đã cho?
A. | B. | C. | D. |
Câu 12. Một bình đựng
viên bi xanh và
viên bi đỏ. Lấy ngẫu nhiên
viên bi. Xác suất để thu được
bi cùng màu là
A. | B. | C. | D. |
II. TỰ LUẬN (14,0 điểm)
Câu 1. (4,0 điểm)
1.1. Tính giá trị biểu thức:
1.2. Tìm
biết:
1.3. Tìm số tự nhiên lớn nhất có 3 chữ số, biết số đó chia hết cho mỗi hiệu
và
.
Câu 2. (4,0 điểm)
2.1. Cho biểu thức
với ![]()
a) Tìm số nguyên
để biểu thức ![]()
Đề lỗi ảnh hiển thị hết rồi. Bạn coi lại.
Câu 11. Số tự nhiên x thỏa mãn là
A. 1. B. 0. C. 0;1. D. Một kết quả khác.
Bài 6
Ạ)Cho a2 +4b2+9c2=2ab+6bc+3ca. Tính giá trị của biểu thức
A=(a-2b+1)2022+(2b-3c-1)2023+(3c-a+1)2024
B) cho x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0 tìm giá trị lớn nhất và nhỏ nhất của biểu thức A= x+y+2024
a: \(a^2+4b^2+9c^2=2ab+6bc+3ac\)
=>\(2a^2+8b^2+18c^2-4ab-12bc-6ac=0\)
=>\(a^2-4ab+4b^2+4b^2-12bc+9c_{}^2+a^2-6ac+9c^2=0\)
=>\(\left(a-2b\right)^2+\left(2b-3c\right)^2+\left(a-3c\right)^2=0\)
=>\(\begin{cases}a-2b=0\\ 2b-3c=0\\ 3c-a=0\end{cases}\Rightarrow a=2b=3c\)
\(A=\left(a-2b+1\right)^{2022}+\left(2b-3c-1\right)^{2023}+\left(3c-a+1\right)^{2024}\)
\(=\left(a-a+1\right)^{2022}+\left(2b-2b-1\right)^{2023}+\left(a-a+1\right)^{2024}\)
=1-1+1
=1
b: \(x^2+2xy+6x+6y+2y^2+8=0\)
=>\(x^2+2xy+y^2+6\left(x+y\right)+9+y^2-1=0\)
=>\(\left(x+y+3\right)^2-1=-y^2\)
=>\(-y^2=\left(x+y+2\right)\left(x+y+4\right)\)
=>\(-y^2=\left(x+y+2024-2022\right)\left(x+y+2024-2020\right)\)
=>\(-y^2=\left(A-2022\right)\left(A-2020\right)\)
mà \(-y^2\le0\forall y\)
nên (A-2022)(A-2020)<=0
=>2020<=A<=2022
\(A_{\min}=2020\) khi x+y+2=0 và y=0
=>y=0 và x=-2-y=-2-0=-2
\(A\max=2022\) khi x+y+4=0 và y=0
=>y=0 và x=-y-4=-4
Bài 6
Ạ)Cho a2 +4b2+9c2=2ab+6bc+3ca. Tính giá trị của biểu thức
A=(a-2b+1)2022+(2b-3c-1)2023+(3c-a+1)2024
B) cho x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0 tìm giá trị lớn nhất và nhỏ nhất của biểu thức A= x+y+2024
A.
$a^2+4b^2+9c^2=2ab+6bc+3ac$
$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$
$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$
$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$
$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$
$\Rightarrow a-2b=a-3c=2b-3c=0$
$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$
B.
$x^2+2xy+6x+6y+2y^2+8=0$
$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$
$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$
$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)
$\Rightarrow -1\leq x+y+3\leq 1$
$\Rightarrow -4\leq x+y\leq -2$
$\Rightarrow 2020\leq x+y+2024\leq 2022$
$\Rightarrow A_{\min}=2020; A_{\max}=2022$
Ko thèm tick cho người ta mà đòi hỏi câu khác ✅
tìm giá trị của x thỏa mãn biểu thức x-7=5 mũ 2 là
a.42
b.4
c.144
d.32
Có mấy cặp số tự nhiên a và b thỏa mãn a + b = 48 và ước chung lớn nhất AB = 6
A:2
B:3
C:4
D:8
(6;42); (30;18)
=>A
Có mấy cặp số tự nhiên a và b thỏa mãn a + b = 48 và ước chung lớn nhất AB = 6
A:2
B:3
C:4
D:8