a, x2-5xy+2x-10y
b, x2-5x+4
Phân tích đa thức thành nhân tử.
a) 5x - 10y
b) 3x2y - 6xy2
c) x(x - y) - 3(y - x)
d)2x(x - 1) + 4x2(1 - x)
e) x2- 4xy + 4y2
f) 9x2- 16y2
g) x3- 27.
\(a,=5\left(x-2y\right)\\ b,=3xy\left(x-2y\right)\\ c,=\left(x-y\right)\left(x+3\right)\\ d,=\left(x-1\right)\left(2x-4x^2\right)=2x\left(1-2x\right)\left(x-1\right)\\ e,=\left(x-2y\right)^2\\ f,=\left(3x-4y\right)\left(3x+4y\right)\\ g,=\left(x-3\right)\left(x^2+3x+9\right)\)
a. 5x - 10y
= 5(x - 2y)
b. 3x2y - 6xy2
= 3xy(x - 2y)
c. x(x - y) - 3(y - x)
= x(x - y) + 3(x - y)
= (x + 3)(x - y)
d. 2x(x - 1) + 4x2(1 - x)
= 2x(x - 1) - 4x2(x - 1)
= (2x - 4x2)(x - 1)
= 2x(1 - 2x)(x - 1)
e. x2 - 4xy + 4y2
= (x - 2y)2
f. 9x2 - 16y2
= (3x - 4y)(3x + 4y)
g. x3 - 27
= (x - 3)(x2 + 3x + 9)
a) 3x(x+1)-x(3x+2)
b) 2x(x2-5x+6)+(x-1)(x+3)
c) (x2-xy+y2)-(x2+2xy+y2)
d) (2/5xy+x-y)-(3x+4y)-2/5xy
e) 2xy(x2-4xy+4y2)
f) (x+y)(xy+5)
g) (x3-2x2-x+2):(x-1)
h) (2x2+3x-2):(2x-1)
Bài 1. Làm tính nhân:
a) 3x2 (2 - 5xy)
b) -\(\dfrac{2}{3}\) xy (xy2 - x3 + 4)
c) ( x - 7 y )( xy + 1)
Bài 2. Rút gọn các biểu thức sau:
a) 5x(4x2 - 2x +1) - 2x(10x2 - 5x - 2)
b) 3x( x - 2) - 5x(1- x) - 8(x2 - 3)
d) (x3 - 2x)(x2 +1)
Bài 1:
\(a,6x^2-15x^3y\\ b,=-\dfrac{2}{3}x^2y^3+\dfrac{2}{3}x^4y-\dfrac{8}{3}xy\)
Bài 2:
\(a,=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\\ b,=3x^2-6x-5x+5x^2-8x^2+24=24-11x\\ c,=x^5+x^3-2x^3-2x=x^5-x^3-2x\)
câu d của bài 2 là của bài 1 nha mình để nhầm chỗ huhu
a.P=(5x2-2xy+y2)-(x2+y2)-(4x2-5xy+1)
b. chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến x:
(x2-5x+4)(2x+3)-(2x2-x-10)(x-3)
`# \text {04th5}`
`a.`
`P = (5x^2 - 2xy + y^2) - (x^2 + y^2) - (4x^2 - 5xy + 1)`
`= 5x^2 - 2xy + y^2 - x^2 - y^2 - 4x^2 + 5xy - 1`
`= (5x^2 - x^2 - 4x^2) + (-2xy + 5xy) + (y^2 - y^2) - 1`
`= 3xy - 1`
`b.`
\((x^2-5x+4)(2x+3)-(2x^2-x-10)(x-3)\)
`= x^2(2x + 3) - 5x(2x + 3) + 4(2x + 3) - [ 2x^2(x - 3) - x(x - 3) - 10(x - 3)]`
`= 2x^3 + 3x^2 - 10x^2 - 15x + 8x + 12 - (2x^3 - 6x^2 - x^2 + 3x - 19x + 30)`
`= 2x^3 -7x^2 - 7x + 12 - (2x^3 - 7x^2 - 7x + 30)`
`= 2x^3 - 7x^2 - 7x + 12 - 2x^3 + 7x^2 + 7x -30`
`= -30`
Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.
thu gọn biểu thức
a) (6x-2)2+4(3x-1)(2+y)+(y+2)2-(6x+y)2
b)5(2x-1)2+2(x-1)(x+3)-2(5-2x)2-2x(7x+12)
c)2(5x-1)(x2-5x+1)+(x2-5x+1)2+(5x-1)2-(x2-1)(x2+1)
d)(x2+4)2-(x2+4)(x2-4)(x2+16)-8(x-4)(x+4)
`#3107`
`a)`
`(6x - 2)^2 + 4(3x - 1)(2 + y) + (y + 2)^2 - (6x + y)^2`
`= [(6x - 2)^2 - (6x + y)^2] + 4(3x - 1)(2 + y) + (2 + y)^2`
`= (6x - 2 - 6x - y)(6x -2 + 6x + y) + (2 + y)*[ 4(3x - 1) + 2 + y]`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x - 4 + 2 + y)`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x + y - 2)`
`= (12x + y - 2)(2 - y + 2 + y)`
`= (12x + y - 2)*4`
`= 48x + 4y - 8`
`b)`
\(5(2x-1)^2+2(x-1)(x+3)-2(5-2x)^2-2x(7x+12)\)
`= 5(4x^2 - 4x + 1) + 2(x^2 + 2x - 3) - 2(25 - 20x + 4x^2) - 14x^2 - 24x`
`= 20x^2 - 20x + 5 + 2x^2 + 4x - 6 - 50 + 40x - 8x^2 - 14x^2 - 24x`
`= - 51`
`c)`
\(2(5x-1)(x^2-5x+1)+(x^2-5x+1)^2+(5x-1)^2-(x^2-1)(x^2+1)\)
`= [ 2(5x - 1) + x^2 - 5x + 1] * (x^2 - 5x + 1) + (5x - 1)^2 - [ (x^2)^2 - 1]`
`= (10x - 2 + x^2 - 5x + 1) * (x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= (x^2 + 5x - 1)(x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= x^4 - (5x - 1)^2 + (5x - 1)^2 - x^4 + 1`
`= 1`
`d)`
\((x^2+4)^2-(x^2+4)(x^2-4)(x^2+16)-8(x-4)(x+4)\)
`= (x^2 + 4)*[x^2 + 4 - (x^2 - 4)(x^2 + 16)] - 8(x^2 - 16)`
`= (x^2 + 4)(x^4 + 12x^2 - 64) - 8x^2 + 128`
`= x^6 + 16x^4 - 16x^2 - 256 - 8x^2 + 128`
`= x^6 + 16x^4 - 24x^2 - 128`
a) A = -3x(x-5) +3( x2 -4x) -3x-10
b) B = 4x( x2 -7x +2) – 4( x3 -7x2 +2x -5)
c) C = 5x( x2 – x) – x2( 5x-5) -15
d) D = 7( x2 -5x+3)- x( 7x-35) -14
e) E = x2 - 4x - x( x-4) -15
A = - 3\(x\).(\(x-5\)) + 3(\(x^2\) - 4\(x\)) - 3\(x\) - 10
A = - 3\(x^2\) + 15\(x\) + 3\(x^2\) - 12\(x\) - 3\(x\) - 10
A = (- 3\(x^2\) + 3\(x^2\)) + (15\(x\) - 12\(x\) - 3\(x\)) - 10
A = 0 + (3\(x-3x\)) - 10
A = 0 - 10
A = - 10
Cho A = 5x(4 x 2 – 2x + 1) – 2x(10 x 2 – 5x – 2) – 9x + 1. Chọn câu đúng
A. A = 9x
B. A = 18x + 1
C. A = 9x + 1
D. giá trị của biểu thức A không phụ thuộc vào biến x
A = 5x(4 x 2 – 2x + 1) – 2x(10 x 2 – 5x – 2) – 9x + 1
ó A = 5x.4 x 2 – 5x.2x + 5x.1 – 2x.10 x 2 – 2x.(-5x) – 2x(-2) – 9x + 1
ó A = 20 x 3 – 10 x 2 + 5 x – 20 x 3 + 10 x 2 + 4x – 9x + 1
ó A = 9x – 9x + 1
ó A = 1
Vậy giá trị của biểu thức A không phụ thuộc vào biến x
Đáp án cần chọn là: D
1/ Thực hiện phép nhân :
a) x2 ( 5x3 - x - \(\dfrac{1}{2}\))
b) ( 3xy - x2 + y ) \(\dfrac{2}{3}\)x2y
c) x2 ( 4x3 - 5xy + 2x ) ( -\(\dfrac{1}{2}\) xy )
2/ Tìm x, biết
a) 3x( 12x - 4 ) - 9x (4x - 3 ) = 30
b ) x( 5 - 2x ) + 2x ( x - 1 )= 15
2.
a. 3x(12x - 4) - 9x(4x - 3) = 30
<=> 36x2 - 12x - 36x2 + 27x = 30
<=> 36x2 - 36x2 - 12x + 27x = 30
<=> 15x = 30
<=> x = 2
b. x(5 - 2x) + 2x(x - 1) = 15
<=> 5x - 2x2 + 2x2 - 2x = 15
<=> -2x2 + 2x2 + 5x - 2x = 15
<=> 3x = 15
<=> x = 5
a) x2 ( 5x3 - x - 2323x2y= 6969x3y2- 2323x4y+ 2323x2y2
c) x2 ( 4x3 - 5xy + 2x ) ( -
a. (2x - 5)2 + (4x - 10)(2 + x) + x2 + 4x + 4 = 0
b. ( 3 – x2 + 5x )( x2 – 5x + 3) = 9
\(a,\Rightarrow\left(2x-5\right)^2+2\left(2x-5\right)\left(x+2\right)+\left(x+2\right)^2=0\\ \Rightarrow\left(2x-5+x+2\right)^2=0\\ \Rightarrow3x-3=0\\ \Rightarrow x=1\\ b,\Rightarrow9-\left(x^2-5x\right)^2=9\\ \Rightarrow x^2-5x=0\\ \Rightarrow x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
x2+5x+5xy+25y