Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tuệ Khanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2021 lúc 20:42

\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\dfrac{49}{50}< 1\)

Lê gia Hân
Xem chi tiết
Lê gia Hân
2 tháng 3 2017 lúc 21:53
fire phonenix
Xem chi tiết
Phạm Oanh
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 14:55

Bạn thiếu đề rồi phải là trừ hay cộng j j chứ.

Xét:

`A+B=2+1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025`

`1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025>0`

`=>A+B>2`

Mà `1 2013/2014<2`

`=>A+B>1 2013/2014`

Nguyễn Lê Phương Linh
Xem chi tiết
Duy Nhật
1 tháng 11 2023 lúc 19:52

1/32< 1/2.3

1/42< 1/3.4

...

1/1002< 1/99.100

=> 1/22 + 1/32 + 1/42 + ... + 1/1002< 1/22 + 1/2.3 + 1/3.4 + ... + 1/99.100

A < 1/4 + 1/2 -1/3 + 1/3 - 1/4 +... + 1/99 - 1/100

A < 1/4 + 1/2 -1/100 < 1/4 + 1/2 = 3/4

=> A < 3/4

ph@m tLJấn tLJ
Xem chi tiết
Kudo Shinichi AKIRA^_^
16 tháng 2 2022 lúc 21:48

\(\dfrac{1}{4444}< 1,\dfrac{3}{7}< 1,\dfrac{9}{5}>1,\dfrac{7}{3}>1,\dfrac{14}{15}< 1,\dfrac{16}{16}=1,\dfrac{14}{11}>1\)

Nguyễn Phương Anh
16 tháng 2 2022 lúc 21:51

1/4 < 1

3/7 < 1

9/5 > 1

7/3 > 1

14/15 < 1

16/16 = 1

14/11 >1

crewmate
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 7 2021 lúc 16:16

\(M=1-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)\)

Đặt \(N=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\)

\(2N=1+\dfrac{1}{2}+...+\dfrac{1}{2^9}\)

\(\Rightarrow2N-N=1-\dfrac{1}{2^{10}}\)

\(\Rightarrow N=1-\dfrac{1}{2^{10}}\)

\(\Rightarrow M=1-\left(1-\dfrac{1}{2^{10}}\right)=\dfrac{1}{2^{10}}>\dfrac{1}{2^{11}}\)

Vậy \(M>\dfrac{1}{2^{11}}\)

Nguyễn Viết Tùng
Xem chi tiết
Nguyễn Nam Khánh
Xem chi tiết

A   = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+\(\dfrac{1}{\left(2.n\right)^2}\)

A  =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{\left(2.2\right)^2}\)\(\dfrac{1}{\left(2.3\right)^2}\) +....+\(\dfrac{1}{\left(2.n\right)^2}\)

A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^2.2^2}\) + \(\dfrac{1}{2^2.3^2}\)+......+ \(\dfrac{1}{2^2.n^2}\)

A = \(\dfrac{1}{2^2}\) \(\times\) ( 1 + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+.......+ \(\dfrac{1}{n^2}\))

22 \(\times\) A = 1 + \(\dfrac{1}{2^2}\)\(\dfrac{1}{3^2}\)+......+\(\dfrac{1}{n^2}\)

     4A =  1 + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) +......+ \(\dfrac{1}{n^2}\)

     4A = 1 + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ...+\(\dfrac{1}{n.n}\)

       1   = 1

     \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)

      \(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)

     ...................

 \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right).n}\)

Cộng vế với vế ta có: 

4A = 1+\(\dfrac{1}{2.2}\)+\(\dfrac{1}{3.3}\)+....+\(\dfrac{1}{n.n}\) <1+ \(\dfrac{1}{1.2}\)\(\dfrac{1}{2.3}\)+ ......+ \(\dfrac{1}{\left(n-1\right).n}\)

4A < 1+ \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+....+\(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\) = 2 - \(\dfrac{1}{n}\)

A < ( 2 - \(\dfrac{1}{n}\)): 4 

A < 2 : 4 - \(\dfrac{1}{n}\) : 4

A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\)

Vậy A < \(\dfrac{1}{2}\) 

 

 

nguyễn thị kim ngân
7 tháng 4 2023 lúc 8:55

Ta có :22A=1+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{n^2}\)

            22A-A=1-\(\dfrac{1}{\left(2n\right)^2}\)

            3A=\(\dfrac{\left(2n\right)^2-1}{\left(2n\right)^2}\) <\(\dfrac{n^2}{\left(2n\right)^2}\)=\(\dfrac{1}{2}\)

          3A<\(\dfrac{1}{2}\) suy ra A<\(\dfrac{1}{2}\)