Tìm GTLN của \(x-\sqrt{x}+1\)
Bài 1:
A=\(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
a) Tìm tập xác định của biểu thức A
b) Rút gọn biểu thức A
c) Chứng minh rằng A>0 với mọi x≠1
d) Tìm x để A đạt GTLN, tìm GTLN đó
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\)
c: Ta có: \(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ
\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}>0\forall x\)
Tìm GTNN của:
a)\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b)\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
Tìm GTLN của:
\(\dfrac{1}{\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}}\)
1:
a: \(A=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
căn x+1>=1
=>2/căn x+1<=2
=>-2/căn x+1>=-2
=>A>=-2+1=-1
Dấu = xảy ra khi x=0
b: 
Tìm GTLN của \(\dfrac{\sqrt{x}-1}{x+\sqrt{x}+2}\)
Đặt A=\(\dfrac{\sqrt{x}-1}{x+\sqrt{x}+2}\)\(\Rightarrow Ax+A\sqrt{x}+2A-\sqrt{x}+1=0\)
\(\Leftrightarrow Ax+\sqrt{x}\left(A-1\right)+2A+1=0\)
\(\Delta=\left(A-1\right)^2-4A\left(2A+1\right)=A^2-2A+1-8A^2-4A\)\(=-7A^2-6A+1\ge0\)
\(\Rightarrow-1\le A\le\dfrac{1}{7}\)
Vậy Max A là \(\dfrac{1}{7}\)
Dâu"=" xảy ra \(\Leftrightarrow A=\dfrac{1}{7}\)
\(\Leftrightarrow7\sqrt{x}-7=x+\sqrt{x}+2\)
\(\Leftrightarrow x-6\sqrt{x}+9=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right)^2=0\Leftrightarrow x=9\)
Tìm GTLN của: \(\dfrac{\sqrt{x}+1}{2\sqrt{x}+1}\)
Tìm GTLN của: \(A=\dfrac{\sqrt{x}+1}{2\sqrt{x}+1}\)
\(A=\dfrac{2\sqrt{x}+1-\sqrt{x}}{2\sqrt{x}+1}=1-\dfrac{\sqrt{x}}{2\sqrt{x}+1}\)
Do \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\2\sqrt{x}+1>0\end{matrix}\right.\) \(\Rightarrow\dfrac{\sqrt{x}}{2\sqrt{x}+1}\ge0\)
\(\Rightarrow A\le1\)
\(A_{max}=1\) khi \(x=0\)
Tìm GTNN và GTLN của A=\(\sqrt{1-x}\)\(+\sqrt{1+x}\)
\(A^2=\left(\sqrt{1-x}+\sqrt{1+x}\right)^2\le\left(1^2+1^2\right)\left(1-x+1+x\right)=4\\ \Leftrightarrow A\le2\\ A_{max}=2\Leftrightarrow1-x=1+x\Leftrightarrow x=0\\ A^2=2+2\sqrt{1-x^2}\ge2\\ \Leftrightarrow A\ge\sqrt{2}\\ A_{min}=\sqrt{2}\Leftrightarrow1-x^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy \(\sqrt{2}\le A\le2\)
Tìm GTLN của \(A=\sqrt{x-2}+2\sqrt{x+1}+2019-x\)
Xét \(2A=2\sqrt{x-2}+4\sqrt{x+1}+4038-2x\) (Đk:\(x\ge2\))
\(2A=-\left[\left(x-2\right)-2\sqrt{x-2}+1\right]-\left[\left(x+1\right)-4\sqrt{x+1}+2\right]+4042\)
\(2A=-\left(\sqrt{x-2}-1\right)^2-\left(\sqrt{x+1}-2\right)^2+4042\le4042\)
\(\Leftrightarrow A\le2021\)
\(\Rightarrow Amax=2021\) khi x=3 (tm)Tự đăng câu hỏi xong tự trả lời (T-T)
Tìm GTLN của:
\(A=\dfrac{-3\sqrt{x}}{\sqrt{x}+1}\)
Lời giải:
ĐKXĐ: $x\geq 0$
Với $x\geq 0$ thì $-3\sqrt{x}\leq 0; \sqrt{x}+1>0$. Do đó: $A=\frac{-3\sqrt{x}}{\sqrt{x}+1}\leq 0$
Vậy $A_{\max}=0$. Giá trị này xác định tại $x=0$
Tìm GTLN của P= \(\dfrac{\sqrt{x}+3}{\sqrt{x}+1}\)
ĐKXĐ: x>=0
\(P=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+1+2}{\sqrt{x}+1}\)
\(=1+\dfrac{2}{\sqrt{x}+1}\)
\(\sqrt{x}+1>=1\forall x\) thỏa mãn ĐKXĐ
=>\(\dfrac{2}{\sqrt{x}+1}< =2\forall x\) thỏa mãn ĐKXĐ
=>\(\dfrac{2}{\sqrt{x}+1}+1< =2+1=3\forall x\) thỏa mãn ĐKXĐ
=>P<=3 với mọi x thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi x=0
Tìm GTLN của P \(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\left(x\in Z\right)\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne1\end{matrix}\right.\)
\(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\dfrac{2}{\sqrt{x}-1}\)
Để \(P_{max}\) thì \(1+\dfrac{2}{\sqrt{x}-1}\) max
=>\(\dfrac{2}{\sqrt{x}-1}\) max
=>\(\sqrt{x}-1\) là số nguyên dương nhỏ nhất
=>\(\sqrt{x}-1=1\)
=>\(\sqrt{x}=2\)
=>x=4
Vậy: \(P_{max}=\dfrac{2+1}{2-1}=\dfrac{3}{1}=3\) khi x=4