ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne1\end{matrix}\right.\)
\(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\dfrac{2}{\sqrt{x}-1}\)
Để \(P_{max}\) thì \(1+\dfrac{2}{\sqrt{x}-1}\) max
=>\(\dfrac{2}{\sqrt{x}-1}\) max
=>\(\sqrt{x}-1\) là số nguyên dương nhỏ nhất
=>\(\sqrt{x}-1=1\)
=>\(\sqrt{x}=2\)
=>x=4
Vậy: \(P_{max}=\dfrac{2+1}{2-1}=\dfrac{3}{1}=3\) khi x=4