(a2-b2):(a+b).(a-b)với a=5,b=-3
giúp mình với
Cho a,b thuộc N* thỏa mãn (a,b)=1 . CMR (a2+b2;ab)=1
mình đang gấp giúp mình với
Lời giải:
Giả sử $(a^2+b^2, ab)>1$. Khi đó, gọi $p$ là ước nguyên tố lớn nhất của $(a^2+b^2,ab)$
$\Rightarrow a^2+b^2\vdots p; ab\vdots p$
Vì $ab\vdots p\Rightarrow a\vdots p$ hoặc $b\vdots p$
Nếu $a\vdots p$. Kết hợp $a^2+b^2\vdots p\Rightarrow b^2\vdots p$
$\Rightarrow b\vdots p$
$\Rightarrow p=ƯC(a,b)$ . Mà $(a,b)=1$ nên vô lý
Tương tự nếu $b\vdots p$
Vậy điều giả sử là sai. Tức là $(a^2+b^2, ab)=1$
cho a,b,c là độ dài 3 cạnh của tam giác , chứng minh :
a3+b3+c3+2abc < a(b2+c2)+b(a2+c2)+c(a2+b2) < a3+b3+c3+3abc
mình cần gấp lắm , mn giúp mình với
Biết rằng b > 0, a + b = 5 và limx→0 (∛(ax+1) - √(1 - bx))/x = 2
Khẳng định nào dưới đây sai?
A. 1 < a <3
B. b > 1
C. a2 + b2 > 10
D. a - b < 0
Giúp mình lời giải chi tiết với nha!
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{ax+1}-1+1-\sqrt{1-bx}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{ax}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\dfrac{bx}{1+\sqrt{1-bx}}}{x}\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{a}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\dfrac{b}{1+\sqrt{1-bx}}\right)\)
\(=\dfrac{a}{3}+\dfrac{b}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=5\\\dfrac{a}{3}+\dfrac{b}{2}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)
a/. a4 + b4 ≥ 2a2b2
b/. (a2 + b2)2 ≥ 2a3b + 2ab3
c/. a2 - b2 ≥ 2ab (a - b)
d/. (a + b)2 ≥ 4ab
Mọi người giupps em với ạ :((
a: \(a^4+b^4\ge2a^2b^2\)
\(\Leftrightarrow a^4-2a^2b^2+b^4>=0\)
hay \(\left(a^2-b^2\right)^2\ge0\)(luôn đúng)
d: \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
các bạn giúp mik với (giúp đc nhiều thì giúp mai nộp rồi)
Bài 1.Tính:
a) (a2- 4)(a2+4) b) (a-b+c)(a+b+c) g) (a – 5)(a2 + 10a + 25)c) (a-b)(a+b)(a2+b2)(a4+b4) d) (3x+y-2)2 h) (x2- 4x + 16)(x+4)
e) (22 - 1)(22 +1)(24 + 1)(28 + 1) f) (x+y)3 - (x-y)3 k)
Bài 2: Tìm x biết:
a) (2x + 1)2 - 4(x + 2)2 = 9;
b) (x -2)2 – (x +3)2 = 45
c) (x - 3)(x2 + 3x + 9) + x(x + 2)(2 - x) = 1;
d) (x + 1)3 - (x - 1)3 - 6(x - 1)2 = -10
Bài 3.Biết số tự nhiên x chia cho 7 dư 6.CMR:x2 chia cho 7 dư 1
Bài 4. So sánh:
a) A = 1997 . 1999 và B = 19982
b)A = 4(32 + 1)(34 + 1)…(364 + 1) và B = 3128 - 1
Bài 5: Cho tam giác ABC các đường trung tuyến BD và CE cắt nhau ở G . gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE // IK, DE = IK
Bài 6: Cho tam giác ABC. Trên cạnh AB lấy hai điểm M, N sao cho AM = MN = NB. Từ M và N kẻ các đường thẳng song song với BC, chúng cắt AC tại E và F. Tính độ dài các đoạn thẳng NF và BC biết ME = 5cm.
Bài 7: Cho D ABC có BC =4cm, các trung tuyến BD, CE. Gọi M,N theo thứ tự là trung điểm của BE,CD. Gọi giao điểm của MN với BD,CE theo thứ tự là P, Q
a) Tính MN b) CMR: MP =PQ =QN
Bài 8: Cho hình thang ABCD (AB // CD) các tia phân giác góc ngoài đỉnh A và D cắt nhau tại H. Tia phan giác góc ngoài đỉnh B và C cắt nhau ở K. CMR:
a) AH ^ DH ; BK ^ CK
b) HK // DC
c) Tính độ dài HK biết AB = a ; CD = b ; AD = c ; BC = dBài 1.Tính:
\(a,=a^8-16\\ b,\left(a+c\right)^2-b^2=a^2+2ac+c^2-b^2\\ c,=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\\ =\left(a^4-b^4\right)\left(a^4+b^4\right)=a^8-b^8\\ d,=\left[\left(3x+y\right)-2\right]^2=\left(3x+y\right)^2-4\left(3x+y\right)+4\\ =9x^2+6xy+y^2-12x-4y+4\\ h,=x^3+64\\ e,=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1=...\\ f,=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\\ =2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\\ =2y\left(3x^2+y^2\right)\)
e đăng đừng Ctrl+V nhiều quá lóe mắt :vv
\(2,\\ a,\Rightarrow4x^2+4x+1-4x^2-16x-16=9\\ \Rightarrow-12x=24\Rightarrow x=-2\\ b,\Rightarrow x^2-4x+4-x^2-6x-9=45\\ \Rightarrow-10x=50\Rightarrow x=-5\\ c,\Rightarrow x^3-27+4x-x^3=1\\ \Rightarrow4x=28\Rightarrow x=7\\ d,\Rightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6=-10\\ \Rightarrow12x=-6\Rightarrow x=-\dfrac{1}{2}\)
tính giá trị của biểu thức
A=a2(a+b)-b(a2-b2)+2013 với a=1,b= -1
\(A=a^2\left(a+b\right)-b\left(a^2+b^2\right)+2013\)
Thay a=1;b=-1 vào biểu thức A ta có:
\(A=1\left(1+\left(-1\right)\right)-\left(-1\right)\left(1-1\right)+2013\)
\(=0-0+2013\)
\(=2013\)
tính giá trị của biểu thức
A=a2(a+b)-b(a2-b2)+2013 với a=1,b= -1
\(A=a^2\left(a+b\right)-b\left(a^2-b^2\right)+2013\)
\(=a^2\left(a+b\right)-b\left(a-b\right)\left(a+b\right)+2013\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+2013\)
\(=\left(1-1\right)\left(a^2-ab+b\right)^2+2013=0+2013=2013\)
B=m(m-n+1)-n(n+1-m) với m= -\(\dfrac{2}{3}\)n= -\(\dfrac{1}{3}\)
tính giá trị của các biểu thức sau
Chứng minh rằng nếu: a/b = b/c thì a2 + b2/b2 + c2 = a/b( Với b,c # 0).
Giúp mk với ạ! Mk cảm ơn
với ab khác 0 cm:a2/b2+b2/a2>=2(a/b+b/a)
Đề bài ko đúng bạn.
Với \(a=b=1\) thay vào \(\Rightarrow1+1\ge2\left(1+1\right)\Rightarrow2\ge4\) (sai)
1 Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
2 Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).
3 Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.
2:
a: =>a^2+2ab+b^2-2a^2-2b^2<=0
=>-(a^2-2ab+b^2)<=0
=>(a-b)^2>=0(luôn đúng)
b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0
=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)