\(A=a^2\left(a+b\right)-b\left(a^2+b^2\right)+2013\)
Thay a=1;b=-1 vào biểu thức A ta có:
\(A=1\left(1+\left(-1\right)\right)-\left(-1\right)\left(1-1\right)+2013\)
\(=0-0+2013\)
\(=2013\)
\(A=a^2\left(a+b\right)-b\left(a^2+b^2\right)+2013\)
Thay a=1;b=-1 vào biểu thức A ta có:
\(A=1\left(1+\left(-1\right)\right)-\left(-1\right)\left(1-1\right)+2013\)
\(=0-0+2013\)
\(=2013\)
tính giá trị của biểu thức
A=a2(a+b)-b(a2-b2)+2013 với a=1,b= -1
Rút gọn: M= (a2+b2+2)3-(a2+b2-2)3-12(a2+b2)2
Cho a + b =1. Hãy tính giá trị của biểu thức N= a3+b3+3ab
Cho abc ≠ 0; a + b = c. Tính giá trị của biểu thức B = (a 2 + b 2 − c 2 )(b 2 + c 2 − a 2 )(c 2 + a 2 − b 2 ) 8a 2 b 2 c 2
A. -1
B. 1
C. 2
D. -2
Cho biểu thức D = a ( b 2 + c 2 ) – b ( c 2 + a 2 ) + c ( a 2 + b 2 ) – 2 a b c . Phân tích D thành nhân tử và tính giá trị của C khi a = 99; b = -9; c = 1.
A. D = (a – b)(a + c)(c – b); D = 90000
B. D = (a – b)(a + c)(c – b); D = 108000
C. D = (a – b)(a + c)(c + b); D = -86400
D. D = (a – b)(a – c)(c – b); D = 105840
a,Chứng minh bđt:
1,(a-1)(a-3)(a-4)(a-6)+9 ≥ 0
2,a2/b+c-a+b2/c+a-b+c2/a+b-c ≥ a+b+c (a,b,c là độ dài 3 cạnh tam giác)
b,Cho a2-4a+1=0.Tính giá trị của biểu thức A=a4+a2+1/a2
c,Cho a,b,c thỏa mãn 1/a+1/b+1/c=1/a+b+c.Tính giá trị của biểu thức M=(a5+b5)(b7+c7)(c2013+a2013)
Cho a + b = 1. Tính giá trị của các biểu thức sau:
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b).
cho a+b=1. Tính giá trị của biểu thức sau:
M=a3+b3+3ab(a2+b2)+6a2b2(a+b)
Cho a+b=1.Tính giá trị của biểu thức sau:
M=a3+b3+3ab(a2+b2)+6a2b2(a+b)
Cho a + b = 1. Tính giá trị của các biểu thức sau:
M = a 3 + b 3 + 3 a b ( a 2 + b 2 ) + 6 a 2 b 2 ( a + b ) .