Cho 2 đoạn thẳng MN và PQ cắt nhau tại trung điểm I của mỗi đường C
CM: a) ∆IPN=∆IQM
CM: b)PQ\\QM
Cho 2 đoạn thẳng MN và PQ cắt nhau tại trung điểm I của mỗi đường .CM
a)∆IPN=∆IQM
b)PN\\QM
a)Xét 2 tam giác NIP và MIQ:
Có:IP=IQ(I là trung điểm của PQ)
góc PIN=góc MIQ(=90 độ/đối đỉnh)
IM=IN(I là trung điểm của MN)
=>tam giác NIP=tam giác MIQ(c-g-c)
b)Vì tam giác NIP=tam giác MIQ(cm a)
=>góc N= góc M (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=>PN//MQ
Cho hai đoạn thẳng MN và PQ cắt nhau tại trung điểm I của mỗi đường. Chứng minh : a) ∆IPN = ∆IQM. b) PN//QM
b: Xét tứ giác MPNQ có
I là trung điểm của MN
I là trung điểm của PQ
Do đó: MPNQ là hình bình hành
Suy ra: PN//QM
Cho hai đoạn thẳng MN và PQ cắt nhau tại A và A là trung điểm của mỗi đoạn thẳng. Cho I là trung điểm của đoạn thẳng MQ. Đường thẳng AI cắt PN tại R. Chứng minh:
a) tam giác AMQ = tam giác ANP
b) MQ // PN
c) RP = RN
Ta có hình vẽ sau:
a/ Xét ΔAMQ và ΔANP có:
AM = AN (gt)
\(\widehat{MAQ}=\widehat{NAP}\) (đối đỉnh)
AQ = AP (gt)
=> ΔAMQ = ΔANP (c.g.c) (đpcm)
b/ Vì ΔAMQ = ANP (ý a)
=> \(\widehat{QMA}=\widehat{PNA}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> MQ // PN (đpcm)
c/+) Xét ΔAMI và ΔANR có:
\(\widehat{MAI}=\widehat{NAR}\) (đối đỉnh)
AM = AN(gt)
\(\widehat{AMI}=\widehat{RNA}\) (so le trong do MQ // PN (ý b))
=> ΔAMI = ΔANR (g.c.g)
=> MI = NR (1)
+) CM tương tự ta có:
ΔAQI = ΔAPR (g.c.g)
=> QI = PR (2)
Từ (1); (2) và I là trung điểm của MQ
=> RP = RN (đpcm)
Cho 2 đường thẳng MN,PQ cắt nhau tại A và A là trung điểm của mỗi đoạn thẳng. Cho I là trung điểm của đoạn thẳng MQ. Đường thẳng AI cắt PN tạiR
a) chứng minh rằng: tam giác AMQ= Tam giác ANP
b) chứng minh rằng:MQ//PN
c) chứng minh rằng: RP=RN
a) Xét \(\Delta AMQ,\Delta ANP\) có :
\(AM=AN\) (A là trung điểm của MN)
\(\widehat{MAQ}=\widehat{NAP}\) (đối đỉnh)
\(AQ=AP\) (A là trung điểm của QP)
=> \(\Delta AMQ=\Delta ANP\left(c.g.c\right)\) (*)
b) Từ (*) suy ra : \(\left\{{}\begin{matrix}\widehat{MQA}=\widehat{NPA}\\\widehat{QMA}=\widehat{PNA}\end{matrix}\right.\) (2 góc tương ứng)
Mà thấy : Mỗi cặp góc bằng nhau ở vị trí so le trong
=> \(MQ//PN\left(đpcm\right)\)
c) Ta có : \(MQ=PN\) [từ (*)]
Lại có : \(IM=IQ\) (I là trung điểm của MQ)
Suy ra : \(RP=RN\rightarrowđpcm\)
Cho 2 đoạn thẳng MN và PQ cắt nhau tại trung điểm E của mỗi đoạn
a, Chứng minh: MP = NQ
b, Chứng minh: MQ = NP
c, Chứng minh: MP // NQ
a: Xét tứ giác MPNQ có
E là trung điểm của MN
E là trung điểm của QP
Do đó: MPNQ là hình bình hành
Suy ra: MP=NQ
b: Ta có: MPNQ là hình bình hành
nên MQ=NP
c: Ta có: MPNQ là hình bình hành
nên MP//NQ
Cho 2 đoạn thẳng MN và PQ cắt nhau tại trung điểm O của mỗi đoạn thẳng a/ Chứng minh : Tam giác MOQ = Tam giác NOP b/Chứng minh : MQ // PN c/ Qua O vẽ đường thẳng vuông góc với MQ tại điểm H ( H thuộc MQ )Chứng minh HO vuông góc với PN
b: Xét tứ giác MPNQ có
O là trung điểm của MN
O là trung điểm của PQ
Do đó: MPNQ là hình bình hành
Suy ra MQ//PN
Cho MN và PQ cắt nhau tại trung điểm O của mỗi đoạn . chứng minh rằng PM+PQ >2PO
Cho hai đoạn thẳng MN và PQ cắt nhau tại trung điểm O của mỗi đoạn.
Chứng minh rằng : a, △MQO = △NPO ; b, MQ ∥ NP
HÌNH ẢNH CHỈ MANG TÍNH CHẤT MINH HỌA
a) +) Xét ΔMQO và ΔNPO có
MO = NO ( gt)
\(\widehat{MOQ}=\widehat{NOP}\) ( 2 góc đối đỉnh )
OP = OQ ( gt)
⇒ ΔMQO = ΔNPO ( c-g-c)
b) +) Ta có ΔMQO = ΔNPO ( cmt)
⇒ \(\widehat{OMQ}=\widehat{ONP}\) ( 2 góc tương unsgws )
Mà 2 góc này ở vị trí so le trong
⇒ MQ // NP
@@@ Học tốt
Chiyuki Fujito