a: Xét tứ giác MPNQ có
E là trung điểm của MN
E là trung điểm của QP
Do đó: MPNQ là hình bình hành
Suy ra: MP=NQ
b: Ta có: MPNQ là hình bình hành
nên MQ=NP
c: Ta có: MPNQ là hình bình hành
nên MP//NQ
a: Xét tứ giác MPNQ có
E là trung điểm của MN
E là trung điểm của QP
Do đó: MPNQ là hình bình hành
Suy ra: MP=NQ
b: Ta có: MPNQ là hình bình hành
nên MQ=NP
c: Ta có: MPNQ là hình bình hành
nên MP//NQ
Cho hai đoạn thẳng MN và PQ cắt nhau tại trung điểm O của mỗi đoạn a) chứng minh tam giác MOQ= tam giác NOP b) Lấy D thuộc đoạn MQ và E thuộc đoạn NP sao cho MD=NE.Chứng minh O là trung điểm của DE
Cho tam giác MNP vuông tại M, trung tuyến MI. Trên tia MI lấy điểm Q sao cho MQ=2MI. Chứng minh NQ//MP. Chứng minh tam giác MNP=tam giác NMQ. Gọi G là trọng tâm của tam giác MNQ. Tính IG biết MN =9cm, NQ = 12cm. Trên tia MQ lấy điểm K sao cho MQ = 3MK. Gọi E là trung điểm của MP. Chứng minh N,K, thẳng hàng
Tình trang gấp 1 ngày nữa thôi ai giải hộ mình bài này:
Cho tam giác MNP vuông tại M, trung tuyến MI. Trên tia MI lấy điểm Q sao cho MQ =2MI :
a) Chứng minh NQ//MP
b) Chứng minh tam giác MNP = tam giác NMQ
c) Gọi G là trọng tâm của tam giác MNQ. Tính IG biết MN=9cm, NQ=12cm
d) Trên tia MQ lấy điểm K sao cho MQ=3MK. Gọi E là trung điểm của MP . Chứng minh N, K, E thẳng hàng
Mình cảm ơn trước
Cho ΔMNP có MN < MP, Trên cạnh MP lấy điểm A sao cho MN = MA. Gọi B là trung điểm của đoạn NA. a) Chứng minh ΔMNB = ΔMAB. b) Tia MB cắt cạnh NP tại D. Chứng minh ND = DA. c) Trên tia đối của tia NM lấy điểm E sao cho NE = AP. Chứng minh 3 điểm A, D, E thẳng hàng.
cho 2 đường thẳng a b song song nhau. trên đường thẳng a lấy 2 điểm M,N và trên đường thẳng b lấy P,Q sao cho MN=PQ. nối M với P và N với Q
a) chứng minh MP=NQ
b) chứng minh MP||NQ
Cho tam giác MNP. Tại đỉnh M dựng góc xMN so le trong với góc N. Trên tia Mx lấy điểm Q sao cho đoạn thẳng MQ=NP, đoạn thẳng PQ cắt đoạn thẳng MN tại O.
a) chứng minh O là trung điểm đoạn thẳng MN.
b) chứng minh 2 tam giác MOP và NOQ bằng nhau.
Cho tam giác MNP vuông tại M có MN=4cmc ,NP=5cm.Trên tia đối của tia MN lấy điểm A sao cho MN=MA.
a) Chứng minh PN=PA.
b) Gọi B là trung điểm cua AP,đường thẳng NB cắt PM tại G.Tính MP;GP.
c) Đường trung trực của đoạn thẳng MP cắt MP tại I và cắt NP tại C.Chứng minh ba đường thẳng PM,NB và AC đồng quy.
d) Chứng minh IA+IP<NA+NP.
Cho tam giác ABC cân tại A có đường cao AH (H thuộc BC)
a) Chứng minh: H là trung điểm BC và hai góc BAH và HAC bằng nhau
b) Kẻ HM vuống góc với AB tại M, HN vuông góc với AC tại N. Chứng minh: tam giác AMN cân tại A
c) Vẽ điểm P sao cho điểm H là trung điểm của đoạn NP. Chứng minh: Đường thẳng BC là trung trực của đoạn MP.
d) MP cắt BC tại điểm K. NK cắt MH tại điểm D. Chứng minh: Ba đường thẳng AH, MN, DP cùng đi qua một điểm
Cho MNP có MN = MP. D là trung điểm của NP. Trên tia đối của tia DM lấy điểm Q sao cho DQ = DM
a) Chứng minh MN = PQ
b) Chứng minh MN//PQ
c) Qua M kẻ đường thẳng song song với NP cắt QP tại E. Chứng minh P là trung điểm của QE