cho x,y,z > 0 . Tìm GTNN x^4+y^4 + z^4 với x+y+z=2
1.cho x > 0. tìm GTNN của A = \(\dfrac{3x^4+16}{x^3}\)
2. cho x,y,z > 0 thỏa mãn x+y+z=2. tìm GTNN của biểu thức:
P=\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
giúp mình với ạ, mình đang cần gấp trong tối nay ạ.
cho a,b,c > 0 . Tìm GTNN x^4+y^4 + z^4 với x+y+z=0
xl mình nhầm ạ, cho x,y,z > 0 . Tìm GTNN x^4+y^4 + z^4 với x+y+z=2
Liên tục sử dụng Bunhiacopxki dạng phân thức:
\(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\ge\frac{\left[\frac{\left(x+y+z\right)^2}{3}\right]^2}{3}\)
\(=\frac{\frac{\left(x+y+z\right)^4}{9}}{3}=\frac{2^4}{27}=\frac{16}{27}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)
Cho x+y+z=0 ; x+1>0 ; y+1>0 ; z+4>0 . Tìm GTNN x/x+1 + y/y+1 + z/z+4
Ta có:
\(\frac{x}{x+1}=1-\frac{1}{x+1}\)
\(\frac{y}{y+1}=1-\frac{y}{y+1}\)
\(\frac{z}{z+4}=1-\frac{4}{z+4}\)
\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)
\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)
Cho x,y,z>0 sao cho x+y+z=5. Tìm gtnn của A=\(\dfrac{4x}{y^2+4}+\dfrac{4y}{z^2+4}+\dfrac{4z}{x^2+4}\)
Cho x,y,z>0 sao cho x+y+z=5. Tìm gtnn của A=\(\dfrac{4x}{y^2+4}+\dfrac{4y}{z^2+4}+\dfrac{4z}{x^2+4}\)
cho x,y,z>0 thỏa mãn x+y+z=2018
tìm GTNN của \(P=\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\)
Trước tiên chứng minh:
\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đúng)
\(\Rightarrow2\left(a^4+b^4\right)\ge a^4+b^4+a^3b+ab^3=\left(a+b\right)\left(a^3+b^3\right)\)
Áp dụng bài toán được
\(P=\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\)
\(\ge\frac{1}{2}\left(x+y+y+z+z+x\right)=x+z+y=2018\)
cho x,y,z >2. tìm GTNN của \(P=\dfrac{x}{\sqrt{y+z-4}}+\dfrac{y}{\sqrt{x+z-4}}+\dfrac{z}{\sqrt{x+y-4}}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{y+z-4}=a>0\\\sqrt{z+x-4}=b>0\\\sqrt{x+y-4}=c>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{b^2+c^2-a^2+4}{2}\\y=\dfrac{c^2+a^2-b^2+4}{2}\\z=\dfrac{a^2+b^2-c^2+4}{2}\end{matrix}\right.\).
\(2P=\dfrac{b^2+c^2-a^2+4}{a}+\dfrac{c^2+a^2-b^2+4}{b}+\dfrac{a^2+b^2-c^2+4}{c}=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}-a-b-c\).
Áp dụng bất đẳng thức AM - GM:
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}=\left(\dfrac{a^2}{b}+b\right)+\left(\dfrac{b^2}{c}+c\right)+\left(\dfrac{c^2}{a}+a\right)-\left(a+b+c\right)\ge2a+2b+2c-a-b-c=a+b+c\).
Tương tự, \(\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}\ge a+b+c\).
Do đó \(2P\ge a+b+c+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}=\left(a+\dfrac{4}{a}\right)+\left(b+\dfrac{4}{b}\right)+\left(c+\dfrac{4}{c}\right)\ge4+4+4=12\Rightarrow P\ge6\).
Đẳng thức xảy ra khi a = b = c = 2 hay x = y = z = 4.
Vậy Min P = 6 khi x = y = z = 4.
\(P=\dfrac{4x}{2.2.\sqrt{y+z-4}}+\dfrac{4y}{2.2.\sqrt{x+z-4}}+\dfrac{4z}{2.2.\sqrt{x+y-4}}\)
\(P\ge4\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\ge4.\dfrac{3}{2}=6\)
Dấu "=" xảy ra khi \(x=y=z=4\)
cho x,y,z là các số thực dương thỏa mãn x,y,z>0 thỏa mãn x(x-z)+y(y-z) =0 tìm GTNN của \(P=\frac{x^3}{x^2+z^2}+\frac{y^3}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
Cho x,y,z>0 và \(x^2+y^2+z^2+xyz=4\)4. Tìm GTLN và GTNN của biểu thức: P=x+y+z
https://diendantoanhoc.net/topic/167848-x2y2z2xyz4-max-xyz/