Đặt \(\left\{{}\begin{matrix}\sqrt{y+z-4}=a>0\\\sqrt{z+x-4}=b>0\\\sqrt{x+y-4}=c>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{b^2+c^2-a^2+4}{2}\\y=\dfrac{c^2+a^2-b^2+4}{2}\\z=\dfrac{a^2+b^2-c^2+4}{2}\end{matrix}\right.\).
\(2P=\dfrac{b^2+c^2-a^2+4}{a}+\dfrac{c^2+a^2-b^2+4}{b}+\dfrac{a^2+b^2-c^2+4}{c}=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}-a-b-c\).
Áp dụng bất đẳng thức AM - GM:
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}=\left(\dfrac{a^2}{b}+b\right)+\left(\dfrac{b^2}{c}+c\right)+\left(\dfrac{c^2}{a}+a\right)-\left(a+b+c\right)\ge2a+2b+2c-a-b-c=a+b+c\).
Tương tự, \(\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}\ge a+b+c\).
Do đó \(2P\ge a+b+c+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}=\left(a+\dfrac{4}{a}\right)+\left(b+\dfrac{4}{b}\right)+\left(c+\dfrac{4}{c}\right)\ge4+4+4=12\Rightarrow P\ge6\).
Đẳng thức xảy ra khi a = b = c = 2 hay x = y = z = 4.
Vậy Min P = 6 khi x = y = z = 4.
\(P=\dfrac{4x}{2.2.\sqrt{y+z-4}}+\dfrac{4y}{2.2.\sqrt{x+z-4}}+\dfrac{4z}{2.2.\sqrt{x+y-4}}\)
\(P\ge4\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\ge4.\dfrac{3}{2}=6\)
Dấu "=" xảy ra khi \(x=y=z=4\)