Giải phương trình sau:
\(3x\times\left|x+1\right|-2x\times\left|x+2\right|=2\) với x>-1
Giải phương trình:
\(3x\times\left(1-x\right)+\left(x+3\right)\times\left(x-2\right)=-2\times\left(x-4\right)^2\)
Ta có : \(3x\left(1-x\right)+\left(x+3\right)\left(x-2\right)=-2\left(x-4\right)^2\)
=> \(3x\left(1-x\right)+\left(x+3\right)\left(x-2\right)=-2\left(x^2-8x+16\right)\)
=> \(3x-3x^2+x^2+3x-2x-6=-2x^2+16x-32\)
=> \(3x-3x^2+x^2+3x-2x-6+2x^2-16x+32=0\)
=> \(-12x+26=0\)
=> \(x=\frac{26}{12}=\frac{13}{6}\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{\frac{13}{6}\right\}\)
Giải các phương trình sau:
1, \(\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\)
2, \(\left(x-2\right)\left(2x-1\right)=x^2-2x\)
3, \(3x^2-4x+1=0\)
4, \(\left|2x-4\right|=0\)
5, \(\left|3x+2\right|=4\)
6, \(\left|2x-5\right|=\left|-x+2\right|\)
*Giúp mình với mình đg cần gấp ạ T_T
\(1.\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}.\Leftrightarrow\dfrac{x-1-3x}{3}=\dfrac{x-2}{2}.\Leftrightarrow\dfrac{-2x-1}{3}-\dfrac{x-2}{2}=0.\)
\(\Leftrightarrow\dfrac{-4x-2-3x+6}{6}=0.\Rightarrow-7x+4=0.\Leftrightarrow x=\dfrac{4}{7}.\)
\(2.\left(x-2\right)\left(2x-1\right)=x^2-2x.\Leftrightarrow\left(x-2\right)\left(2x-1\right)-x\left(x-2\right)=0.\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1-x\right)=0.\Leftrightarrow\left(x-2\right)\left(x-1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=1.\end{matrix}\right.\)
\(3.3x^2-4x+1=0.\Leftrightarrow\left(x-1\right)\left(x-\dfrac{1}{3}\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=\dfrac{1}{3}.\end{matrix}\right.\)
\(4.\left|2x-4\right|=0.\Leftrightarrow2x-4=0.\Leftrightarrow x=2.\)
\(5.\left|3x+2\right|=4.\Leftrightarrow\left[{}\begin{matrix}3x+2=4.\\3x+2=-4.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}.\\x=-2.\end{matrix}\right.\)
\(1,\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\\ \Leftrightarrow\dfrac{x-1}{3}-x=\dfrac{x-2}{2}\\ \Leftrightarrow\dfrac{2\left(x-1\right)-6x}{6}=\dfrac{3\left(x-2\right)}{6}\\ \Leftrightarrow2\left(x-1\right)-6x=3\left(x-2\right)\\ \Leftrightarrow2x-2-6x=3x-6\\ \Leftrightarrow-4x-2=3x-6\)
\(\Leftrightarrow3x-6+4x+2=0\\ \Leftrightarrow7x-4=0\\ \Leftrightarrow x=\dfrac{4}{7}\)
\(2,\left(x-2\right)\left(2x-1\right)=x^2-2x\\ \Leftrightarrow2x^2-4x-x+2=x^2-2x\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(3,3x^2-4x+1=0\\ \Leftrightarrow\left(3x^2-3x\right)-\left(x-1\right)=0\\ \Leftrightarrow3x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(4,\left|2x-4\right|=0\\ \Leftrightarrow2x-4=0\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)
\(5,\left|3x+2\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
\(6,\left|2x-5\right|=\left|-x+2\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=-x+2\\2x-5=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=7\\x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=3\end{matrix}\right.\)
Giải phương trình sau
1. \(5x^2-16x+7+\left(x+1\right)\sqrt{x^2+3x-1}=0\)
2. \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\left(\frac{2x-1}{2-x}+2\sqrt{2-x}\right)^3=27\left(2x-1\right)\)
Giải phương trình nghiệm nguyên sau:
\(3x^3-13x^2+30x-4=\sqrt{\left(6x+2\right)\left(3x-4\right)^3}\)
Giải các phương trình sau
a) \(\left|x\right|\)=x+1
b) \(\left|3x\right|\)=x-2
c) \(\left|-2x\right|\)=3x-4
\(\left|x\right|=x+1\)
Ta có : \(\left\{{}\begin{matrix}x\ge0\\x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x+1\\-x=x+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0=1\\-2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0=1\left(ktm\right)\\x=-\dfrac{1}{2}\left(tm\right)\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{-\dfrac{1}{2}\right\}\)
__
\(\left|3x\right|=x-2\)
Ta có : \(\left\{{}\begin{matrix}3x\ge0\Leftrightarrow x\ge0\\3x< 0\Leftrightarrow x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=x-2\\-3x=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-2\\-4x=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\left(ktm\right)\)
Vâỵ phương trình vô nghiệm
__
\(\left|-2x\right|=3x-4\)
Ta có : \(\left\{{}\begin{matrix}-2x\ge0\Leftrightarrow x\ge0\\-2x< 0\Leftrightarrow x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=3x-4\\-\left(-2x\right)=3x-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-5x=-4\\2x=3x-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\-x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\left(tm\right)\\x=4\left(ktm\right)\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{4\right\}\)
1.Rút gọn biểu thức:
\(a,\)\(x\times\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)
\(b,\)\(3x\times\left(x-2\right)-5x\times\left(1-x\right)-8\times\left(x^2-3\right)\)
\(c,\)\(\left(2x-6\right)\times\left(x+3\right)-5\times\left(2x^2-x+7\right)\)
cho hàm số \(f\left(x\right)=x^3-3x^2+2\)
a, giải bất phương trình \(f'\left(x\right)\le0\)
b, giải phương trình \(f'=\left(x^2-3x+2\right)=0\)
c, đặt \(g\left(x\right)=f\left(1-2x\right)+x^2-x+2022\) giải bất phương trình\(g'\left(x\right)\ge0\)
\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)
Lời giải:
a. $f'(x)\leq 0$
$\Leftrightarrow 3x^2-6x\leq 0$
$\Leftrightarrow x(x-2)\leq 0$
$\Leftrightarrow 0\leq x\leq 2$
b.
$f'(x)=x^2-3x+2=0$
$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$
$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
c.
$g(x)=f(1-2x)+x^2-x+2022$
$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$
$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$
$g'(x)\geq 0$
$\Leftrightarrow -24x^2+2x+5\geq 0$
$\Leftrightarrow (5-12x)(2x-1)\geq 0$
$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$
Giải phương trình sau:
\(^{\left(x^2+1\right)^2}\)+3x\(^{\left(x^2+1\right)^2}\)+\(^{2x^2}\)=0
Sửa đề: \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)
Ta có: \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)^2+2x\left(x^2+1\right)+x\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+2x+1\right)+x\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)\left(x^2+x+1\right)=0\)
mà \(x^2+x+1>0\forall x\)
nên \(x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
Vậy: S={-1}
Giải phương trình:\(\left(x+2\right)\times\left(x-2\right)\times\left(x^2-10\right)=72\)
Bài làm:
Ta có: \(\left(x+2\right)\left(x-2\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow x^4-14x^2+40-72=0\)
\(\Leftrightarrow x^4-14x^2-32=0\)
\(\Leftrightarrow\left(x^4-16x^2\right)+\left(2x^2-32\right)=0\)
\(\Leftrightarrow x^2\left(x^2-16\right)+2\left(x^2-16\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-16\right)=0\)
Mà \(x^2+2\ge2>0\left(\forall x\right)\)
\(\Rightarrow x^2-16=0\Leftrightarrow\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow x=\pm4\)
( x + 2 )( x - 2 )( x2 - 10 ) = 72
<=> ( x2 - 4 )( x2 - 10 ) = 72
<=> x4 - 14x2 + 40 - 72 = 0
<=> x4 - 14x2 - 32 = 0
Đặt t = x2 ( \(t\ge0\))
Pt <=> t2 - 14t - 32 = 0
<=> t2 + 2t - 16t - 32 = 0
<=> t( t + 2 ) - 16( t + 2 ) = 0
<=> ( t - 16 )( t + 2 ) = 0
<=> \(\orbr{\begin{cases}t-16=0\\t+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}t=16\\t=-2\end{cases}}\)
\(t\ge0\Rightarrow t=16\)
=> x2 = 16
=> \(x=\pm4\)
Giải phương trình sau : \(\dfrac{x^2+3x+2}{x-3}\left(x+1\right)=\dfrac{x^2+3x+2}{x-3}\left(x^2-2x-7\right)\)
\(ĐK:x\ne3\\ PT\Leftrightarrow\dfrac{x^2+3x+2}{x-3}\left(-x-1+x^2-2x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{\left(x+1\right)\left(x+2\right)}{x-3}=0\\x^2-3x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=\dfrac{3+\sqrt{41}}{2}\\x=\dfrac{3-\sqrt{41}}{2}\end{matrix}\right.\)